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Abstract. We establish a direct log-epiperimetric inequality for Yang–Mills fields in arbitrary
dimension and we leverage on it to prove uniqueness of tangent cones with isolated singularity
for energy minimizing Yang–Mills fields and ω-ASD connections (where ω is not necessarily
closed) satisfying some suitable regularity assumptions. En route to this we establish a
Luckhaus type lemma for Yang–Mills connections to exclude curvature concentration along
blow-up sequences.
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1. Introduction

1.1. The general setting: Yang–Mills fields. The aim of this article is to understand the
behaviour of Yang–Mills connections at their singular points, and prove uniqueness of the
corresponding tangent cones whenever they happen to satisfy certain structural properties.
This fits broadly into a line of investigation aiming at understanding the regularity of extrema
of geometric variational problems, and solutions of partial differential equations of geometric
type.
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2 RICCARDO CANIATO AND DAVIDE PARISE

Let us recall the framework we will be working in. Let G be a compact matrix Lie group
with Lie algebra g and (N,h) a smooth n-dimensional Riemannian manifold with n ≥ 2,
possibly with smooth boundary ∂N . The Yang–Mills functional on a principal G-bundle P
over N is given by

YMN (A) :=

∫
N
|FA|2 d volh ∀A ∈ (W 1,2 ∩ L4)(N,T ∗N ⊗ gP ),(1.1)

where FA := dA+A ∧A ∈ L2(N,∧2T ∗N ⊗ gP ) is the curvature of the principal G-connection
A, and the norm |FA| is computed with respect to the Ad-invariant inner product on the
adjoint bundle gP

1 over N . Critical points of YMN are called Yang–Mills fields or Yang–Mills
connections on P .2 Geometrically, the Yang–Mills energy measures how far a certain connection
is from being flat in the L2-sense. From an analytic perspective, YMN is a conformally
invariant3 lagrangian in its critical dimension n = 4, whose properties make the associated
variational problems rich and challenging. For instance, the functional is gauge invariant in
the following precise sense: for every local gauge transformation g ∈ (W 2,2 ∩W 1,4)(N,GP )4

and for every connection A, the gauge transformed connection

Ag := g−1dg + g−1Ag ∈ (W 1,2 ∩ L4)(N,T ∗N ⊗ gP )

satisfies

YMN (Ag) = YMN (A).

The presence of such a large invariance group for YMN leads to several remarkable analytical
consequences. For example, the Euler–Lagrange equations, called Yang–Mills equations, and
the stability operator associated with YMN are not elliptic, at least until a proper relative
Coulomb gauge is chosen, cf. Remark 3.3. Besides, the nonlinearity A ∧ A appearing in
these equations is unwieldy, as it drastically breaks the coercivity of the functional leading to
concentration-compactness phenomena in dimension n ≥ 4.5

The Yang–Mills functional has played a major role in the understanding of the differential
geometry of 4-manifolds. Let us recall a few key examples, without aiming for completeness
(see e.g. [DK90] or [FU91] for a detailed discussion of the subject). Donaldson proved his

1The adjoint bundle gP is the vector bundle π̃ : gP → N over N whose total space is given by

gP := P ×Ad g =
P × g

∼Ad

where

(p1, v1) ∼Ad (p2, v2) ⇔ ∃ g ∈ G : p2 = p1g, v2 = g−1v1g

and whose projection on the base manifold N is defined to be π̃([(p, v)]) := π(p) for every [(p, v)] ∈ gP .
2If P := N ×G is the trivial principal G-bundle over N , for short we said that critical points of YMN are

Yang–Mills fields on N .
3Meaning invariant with respect to rescalings in the domain.
4Here GP stands for the conjugated bundle, i.e. the G-bundle over N whose total space is given by

GP := P ×c G =
P ×G

∼c

where

(p1, h1) ∼c (p2, h2) ⇔ ∃ g ∈ G : p2 = p1g, h2 = g−1h1g

and whose projection on the base manifold N is defined to be π̂([(p, h)]) := π(p) for every [(p, h)] ∈ GP .
5See e.g. [Uhl82a] and [Tia00], where the authors studied the concentration-compactness phenomena for the

Yang–Mills functional respectively in critical and supercritical dimension.
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celebrated result on the existence of non-smoothable topological 4-manifolds by studying
properties of the the moduli space of instantons (special symmetric solutions of the Yang–Mills
equations) over such manifolds (see [Don83]). Notably, these manifolds had already been
constructed by Freedman a year earlier in his solution to the topological 4-dimensional Poincaré
conjecture [Fre82]. A second remarkable application of gauge theory in this context is the
proof of existence of exotic differentiable structures on R4. The existence of at least one “fake”
R4 stems largely from the aforementioned works of Donaldson and Freedman, with Gompf
later providing an explicit construction and showing the existence of at least three such exotic
structures [Gom83]. Finally, Taubes in [Tau87] achieved the sharpest result in this sense,
showing the existence of uncountably many fake R4’s by means of gauge theoretic methods.

Given the effective applications of YMN in four dimensions, it is natural to investigate its
behaviour in higher dimensions, i.e. in the supercritical regime. Notably, a research program
along these lines was proposed by Donaldson and Thomas in [DT98]. Unfortunately, the
analysis of the Yang–Mills lagrangian becomes more challenging in dimension greater than
four and we are confronted with the study of singular solutions, as they naturally arise in
this wilder framework. As in other geometric variational problems, it is useful to consider
tangent cones, tangent connections in this case. These are weak limits of rescalings of the
original connection, capturing the local behaviour around a given point. As these limiting
objects are supposed to model the behaviour around a (singular) point, understanding whether
they are unique is an important issue. A priori, at a given singular point the connection may
asymptotically approach one cone at certain scales, and a different cone at others.

A method to prove uniqueness of tangents with isolated singularity was pionereed by Simon
in [Sim83a] for stationary varifolds, and harmonic maps. The idea is to prove an infinite
dimensional version of the classical  Lojasiewicz gradient inequality for analytic functions in
Euclidean space, cf. Lemma 4.1. In gauge theory, this method was first introduced by Morgan,
Mrowka, and Ruberman in their work [MMR94] on the Chern–Simons functional, while R̊ade
[Rd92] later adapted Simon’s proof in dimensions 2 and 3 for the Yang–Mills functional. It was
only later that Yang [Yan03] used Simon’s method in any dimension to prove that, under strong
curvature bounds, tangent cones at isolated singularities are unique. In this article we follow a
different approach to this old question, and we remove the assumption on the curvature, thus
generalising Yang’s result [Yan03]. We also refer the reader to more recent works of Feehan,
partly in collaboration with Maridakis, establishing various gradient  Lojasiewicz inequalities
[Fee16, Fee22, FM20b, FM20a].

 Lojasiewicz–Simon inequality type arguments are not directly applicable if the singularity
of the cone is not isolated, as they usually require the cone to have a smooth link. In the
case of pseudoholomorphic maps and semicalibrated currents, slicing techniques proved to
be extremely effective (see e.g. [PR10], [RT04], [CR23]). In the particular case of integral
p− p cycles, we also mention the work [Bel14] by Bellettini, in which the author develops the
so called algebraic blow-up method. We currently conjecture that these type of techniques
could be the key to tackle the uniqueness of tangents for general ω-ASD connections6 on
general almost complex manifolds. Note that in the setting of stationary integral 1-varifolds,
uniqueness of tangents is completely settled by [AA81]. We refer the reader to the surveys
[DL22, Wic14] for further details on the uniqueness of tangent cones problem in the setting of
minimal submanifolds.

6See Definition 2.6.
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1.2. Statement of the main results. Since all our results are local, from now on we will
work on the trivial principal G-bundle P = Ω ×G over an open set Ω ⊂ Rn. This corresponds
to taking gP = g and GP = G in the previous definitions and notation. In comparison with
previous literature on the subject, we make minimal regularity assumptions on the class of
connections under consideration. Secondly, we go beyond the Kähler setting, in which the
richer complex structure, and in particular the existence of local holomorphic coordinates,
simplifies the analysis and allows for finer considerations. See below for further details on this
aspect. Besides, our proof is purely variational, and does not exploit any underlying PDE, thus
allowing us to treat in a unified and more systematic way a larger class of extrema, i.e. almost
minimizers. Our first main theorem is the following.

Theorem 1.1 (Uniqueness of tangents). Let G be a compact matrix Lie group with Lie
algebra g. Let n ≥ 5 and let Ω ⊂ Rn be an open set. Assume that the following facts hold.

(1) A ∈ (W 1,2 ∩ L4)(Ω, T ∗Ω ⊗ g) is either an ω-ASD connection on Ω or a YM-energy
minimizer7 such that H n−4(Sing(A) ∩K) < +∞ for every compact set K ⊂ Ω.8

(2) y ∈ Sing(A) and φ is a tangent cone for A at y such that Sing(φ) = {0} and
FAy,ρi

→ Fφ strongly in L2 (modulo gauge transformations) along some sequence of
rescalings ρi → 0 as i→ +∞.

Then, φ is the unique tangent cone to A at y (modulo gauge transformations). Moreover, the
decay is logarithmic, i.e. there exist α > 0 and constants Ck > 0 for every k ∈ N such that

|τ∗y,ρA− φ|Ck(Sn−1) ≤ Ck| log(ρ)|−α,

where τy,ρ(x) = ρx+ y is the rescaling of factor ρ > 0 centered at y. Moreover, if we assume φ
to be integrable, the rate of convergence improves to

|τ∗y,ρA− φ|Ck(Sn−1) ≤ Ckρ
α.

Remark 1.2. Throughout this work, ω we will never assume that ω is closed. This entails that
our ω-ASD connections are just “almost” YM-energy minimizers9 in general.

We briefly comment the main hypotheses in the above theorem.

• H n−4(Sing(A) ∩K) < +∞ for every compact set K ⊂ Ω. This in particular implies
that A is an admissible connection in the sense of [Tia00]. Thus, by [TT04], an
ε-regularity statement is available for A. In fact, if A belongs to any class with such
property, for example the strongly approximable connections introduced in [MR03],
then we can immediately prove Theorem 1.1 following the argument in [Sim12, Section
3.15]. We also point out upcoming work of the first author with Rivière in which
an ε-regularity statement is obtained for weak L2-connections in dimension 5, first
introduced by [PR17] as a suitable variational framework for the Yang–Mills lagrangian
in the first supercritical dimension.

• The tangent cone φ has an isolated singularity at the origin. This is the usual hypothesis
appearing in [Sim83a, ESV19, ESV20] and beyond which it is incredibly difficult to

7See Definition 2.5.
8Here and in what follows, we let

Reg(A) := {x ∈ Ω : A ∈ C∞(Bρ(x), T
∗Bρ(x)⊗ g) for some ρ > 0}

and Sing(A) = Ω∖ Reg(A). Moreover, H k denotes the k-dimensional Hausdorff measure on Rn.
9See Definition 2.5.
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go. In the setting of mean curvature flow, Colding and Minicozzi have been able to
deal with (generic) cylindrical singularities, see [CM15]. We also refer the reader to
work of Székelyhidi on cylindrical tangent cones, [Szé20], and to earlier work of Simon
[Sim93, Sim94].

• Non-concentration of the measures, i.e. emptyness of the bubbling locus. This is
another additional hypothesis due to the potential bubbling of sequences of Yang–Mills
connections. In particular, the curvatures of the rescaled connections τ∗r,yA could exhibit
a concentration set larger than the actual singular set of φ. This possibily is ruled
out in the context of harmonic maps. Indeed, when considering a sequence of energy
minimizing harmonic maps weakly converging in W 1,2, we know that the convergence
is in fact strong [SU82], and the limit is energy minimizing as well [HL87, Luc88].

We overcome this last difficulty by proving the a Luckhaus type lemma for Yang–Mills
connections, currently not available in literature, thus allowing us to completely exclude
curvature concentration in dimension 5. We can also rule out this phenomenon in higher
dimensions, upon requiring the connection to be more regular (cf. Lemma 6.2). See [Wal19] for
related issues of concentration for the parabolic Yang–Mills flow.

Theorem 1.3 (Uniqueness of tangents excluding concentration). Let G be a compact
matrix Lie group with Lie algebra g. Let n ≥ 5 and let Ω ⊂ Rn be an open set. Assume that
the following facts hold.

(1) A ∈ (W 1,n−1
2 ∩Ln−1)(Ω, T ∗Ω⊗g) is either an ω-ASD connection on Ω or a YM-energy

minimizer such that H n−4(Sing(A) ∩K) < +∞ for every compact set K ⊂ Ω.
(2) y ∈ Sing(A) and φ is a tangent cone for A at y such that Sing(φ) = {0}.

Then, φ is the unique tangent cone to A at y (modulo gauge transformations). Moreover, the
decay is logarithmic, i.e. there exist α > 0 and constants Ck > 0 for every k ∈ N such that

|τ∗y,ρA− φ|Ck(Sn−1) ≤ Ck| log(ρ)|−α,

where τy,ρ(x) = ρx+ y is the rescaling of factor ρ > 0 centered at y. Moreover, if we assume φ
to be integrable, the rate of convergence improves to

|τ∗y,ρA− φ|Ck(Sn−1) ≤ Ckρ
α.

As a corollary of the above theorem, we obtain the following sharp result in dimension 5 for
connections in the natural class W 1,2 ∩ L4 appearing in Theorem 1.1.

Corollary 1.4. When n = 5, the class of connections of Theorem 1.3 reduces to the natural one
(W 1,2 ∩ L4)(Ω, T ∗Ω ⊗ g), thus implying that we have curvature non-concentration in dimension
5 in the setting of Theorem 1.1.

Remark 1.5. Although not explicitly stated, it follows from the two-step degeneration theory
developed in [CS20a, CS20b, CS21a, CS21b] that the logarithmic decay is the best possible one.
Indeed, when the algebraic tangent cone and the analytic one coincide, the rate is polynomial.
In particular, considering examples where the two types of cones are different would give
the desired logarithmic decay. We believe that it would still be interesting to construct such
examples more explicitly, as done for minimal surfaces and harmonic maps in [AS88, Section
5], see also [GW89]. We also refer the reader to [CM14] for a similar issue in the setting of
Einstein manifolds, and to [SZ23] for the one of singular Kähler–Einstein metrics.
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In the special case in which the underlying manifold is Kähler (X,ω) and the vector bundle
(E,H) is Hermitian, more refined structural results have been obtained. For instance, the
special class of admissible Hermitian Yang–Mills connections has received a lot of interest in
recent years, see [CS20b] for the definition. For instance, in loc. cit. the authors are able to
relate tangents cones of admissible Hermitian Yang–Mills connections at an isolated singularity
to the complex algebraic geometry of the underlying reflexive sheaf (modulo an extra hypothesis
on the Harder–Narasimhan–Seshadri filtration). See also [JSEW18] for a proof in the case in
which the vector bundle over CPn−1 is a direct sum of polystable bundles. A crucial tool in
[CS20b] is the notion of algebraic tangent cone already mentioned in Remark 1.5, and how it
relates to the notion of (analytic) tangent cone that we introduced earlier in this introduction.
Very loosely speaking this is a torsion-free sheaf over an exceptional divisor satisfying some
extra requirements, and it carries information on the underlying singularities. In [CS21a]
Chen and Sun were able to establish an algebro-geometric characterization of the bubbling set,
always in the setting of isolated singularities (see also [CS20a]). They then go on and conclude
with [CS21b] by fully resolving this dichotomy between different notions of cones. We note
that a key analytic tool of [CS20b], similar to our log-epiperimetric inequality, is a convexity
result in the form of a three circle lemma. We conclude this subsection by motivating the study
of this class of connections.

(i) From the complex geometric point of view, Bando and Siu [BS94] proved that polystable
reflexive sheaves over a compact Kähler manifold always admit an admissible Hermitian
Yang–Mills connection. This generalised the Donaldson–Uhlenbeck–Yau theorem for
holomorphic vector bundles, meaning that these objects are relevant in algebraic geometry.

(ii) From the gauge theoretic perspective, by [Nak88, Tia00] admissible Hermitian Yang–Mills
connections naturally arise in the compactification of the moduli space of smooth ones.
Therefore, they play an important role in understanding the structure of the moduli
space in gauge theory over higher dimensional Kähler manifolds.

(iii) When doing gauge theory over G2 manifolds, it is expected that singularities of this
special class of connections in dimension three model singularities of G2 instantons. We
refer the reader to [JW18, SEW15] for further details on this.

The main ingredient in the proof of Theorem 1.1, Theorem 1.3, and Corollary 1.4 is a new
log-epiperimetric inequality for the Yang–Mills lagrangian, a quantitative estimate on the
suboptimality of the homogeneous extension that we now describe, cf. Theorem 1.6 for the
main estimate.

1.3. Epiperimetric Inequalities. Direct epiperimetric inequalities were introduced in seminal
work of Reifenberg [Rei64a] in the context of minimal surfaces with the aim of proving that
solutions of the Plateau problem, as posed by the author, were analytic [Rei64b]. White later
exploited this idea in [Whi83] to establish uniqueness of tangent cones for two-dimensional
area-minimizing integral currents without boundary in Rn. This result was then extended by
Rivière in [Riv04] where the author introduced the notion of lower epiperimetric inequality,
and proved the corresponding uniqueness of tangents. We note that as a consequence of this
inequality, Rivière exhibited and investigated the phenomenon of splitting before tilting, pivotal
for the proof of regularity of 1 − 1 integral currents joint with Tian [RT09], and crucial for
later developments on the regularity theory of area-minimizing and semicalibrated currents
by De Lellis, Spadaro, and Spolaor, see [DLS16, DLSS17a, Spo19]. As part of a program to
investigate the regularity of two-dimensional almost minimal currents, these last three authors
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recently established in [DLSS17b] an epiperimetric inequality in this setting, thus generalising
the aforementioned work of White.

The introduction of direct epiperimetric inequalities to the framework of free boundary
problems is due to Spolaor and Velichkov in [SV19]. Subsequently, these last two authors,
together with Colombo, proved a novel logarithmic epiperimetric inequality in the context of
obstacle-type problems [CSV18, CSV20a]. In a nutshell, this is a quantitative estimate on
the optimality of the homogeneous extension which gives a logarithmic decay to the blow-up.
The additional terms in the inequality are due to the possible presence of elements in the
kernel of a suitable linearized operator. In [ESV20], always Spolaor and Velichkov, together
with Engelstein, developed a new approach for proving this inequality based on reducing
it to a quantitative estimate for a functional defined on the unit sphere, and studying the
corresponding gradient flow. This was done for the Alt-Caffarelli functional, but the new
perspective found fruitful applications to the study of multiplicity-one stationary cones with
isolated singularities [ESV19], bearing with them new ε-regularity results for almost minimizers.
See also [SV21] and [ESV24].

All of the results mentioned above are direct in the sense that they are based on an
explicit construction of a competitor. This is usually more adapted to establishing decay
estimates around singular points. However, a large class of epiperimetric inequalities are
proven by contradiction. These are based on linearization techniques and the contradiction
arguments appearing in the literature apply to regular points or singular points with additional
structural hypothesis. In the setting of minimal submanifolds we mention works of Taylor on
area-minimizing flat chains modulo 3 and (M, ε, δ)-minimizers [Tay73, Tay76a, Tay76b], while
for free boundary problems the first instance of an epiperimetric inequality is due to Taylor in
[Tay77]. Later on, Weiss in [Wei99] introduced an epiperimetric inequality in the setting of the
classical obstacle problem at flat singular points and along the top stratum of the singular set.
On the other hand, for the thin obstacle problem, we refer the reader to [FS16, GPSVG16].
Eventually, for free boundary problems for harmonic measures we mention work of Badger,
Engelstein, and Toro [BET20] whose great novelty is to apply an epiperimetric inequality for
functions that do not minimize any energy. Our main contribution to this line of investigation
in the setting of the Yang–Mills Lagrangian is the following.

Theorem 1.6 (Log-epiperimetric inequality). Let G be a compact matrix Lie group
with Lie algebra g and let n ≥ 5. Let A0 ∈ C∞(Sn−1, T ∗Sn−1 ⊗ g) be a smooth Yang–Mills

connection and define the 1-form Ã0 ∈ (W 1,2 ∩ L4)(Bn, T ∗Bn ⊗ g) to be its 0-homogeneous
extension inside Bn, given by

Ã0 :=

(
·
| · |

)∗
A0.

There exist constant ε, δ > 0, and γ ∈ [0, 1) depending on the dimension and A0 such that the
following holds. If A ∈ C2,α(Sn−1, T ∗Sn−1 ⊗ g) is such that

∥A−A0∥C2,α(Sn−1) < δ

then there exists Â ∈ (W 1,2 ∩ L4)(Bn, T ∗Bn ⊗ g) such that ι∗Sn−1Â = A and

YBn(Â ; Ã0) ≤
(
1 − ε|YBn(Ã ; Ã0)|γ

)
YBn(Ã ; Ã0),(1.2)

where Ã ∈ (W 1,2 ∩ L4)(Bn, T ∗Bn ⊗ g) is the 0-homogeneous extension of A inside Bn. Further-
more, if the kernel of the second variation is integrable, we can take γ = 0.
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Remark 1.7. We expect that modifying the proof of Theorem 1.6 as in [ESV24] to prove a
symmetric log-epiperimetric inequality, one can prove uniqueness of tangent cones at infinity
for sequences of connections. In particular, one would appeal to the decay-growth Theorem à
la Edelen-Spolaor-Velichkov, cf. [ESV24, Theorem 2.2].

1.4. Ideas of the proofs and structure of the article. The proof of Theorem 1.6 follows
the strategy outlined in [ESV19, ESV20]. In particular, it relies on a careful construction of a
competitor function with energy smaller than the one of the 0-homogeneous extension of A.
The starting point is a slicing lemma to write the energy discrepancy YBn(· ; ·) in Theorem 1.6
in a more convenient form, cf. Lemma 3.2. This is done in Section 3, where we also recall the
Lyapunov–Schmidt reduction adapted to our setting, cf. Lemma 3.4. An additional difficulty
that we have to overcome here is the kernel of the second variation being infinite dimensional.
This is due to the gauge invariance of the Yang–Mills lagrangian. A similar issue was faced in
[CM14], where the authors have to mode out the diffeomorphism invariance of their functional
R (they do so by the Ebin–Palais slice theorem). Similarly, Simon worked with normal graphs
to avoid this issue [Sim83a], while Yang [Yan03] introduced a form of transverse gauge. We
resolve this by simply working in a suitable relative Coulomb gauge.

This different way of writing the energy discrepancy suggests that we can construct the
competitor by flowing inwards the components of the trace A in the directions that decrease the
energy at second order around the critical point A0 with respect to which we want to compute
the energy discrepancy. To choose the appropriate directions of the flow we turn to the second
variation at A0. We write it as a linear elliptic operator with compact resolvent, thus implying
that it has a finite dimensional kernel. Consequently, we can decompose the datum A as the
sum of the projections on the kernel, the positive, and the negative eigenvalues, i.e. the index.
As A0 is Yang–Mills on the sphere Sn−1, positive directions will increase the energy to second
order, while negative directions will decrease it. Whence, we want to move A0 towards zero
in the former, while keeping the latter fixed. To deal with the kernel we resort to a finite
dimensional Yang–Mills flow. To make the estimate on YBn(·, ·) more quantitative, we appeal
to the finite dimensional  Lojasiewicz inequality, cf. Lemma 4.1, which is ultimately responsible
for the error term appearing in (1.2) and is the reason why our inequality is (log)-epiperimetric
instead of just epiperimetric. The proof of Theorem 1.6 just outlined appears Section 4. In the
integrable case, i.e. when the projection of A0 on the kernel of the second variation vanishes,
the proof simplifies significantly, see Subsection 4.1. Note that the logarithmic error term is
unavoidable when considering nonintegrable singularities, and that in the setting of stationary
varifolds, there is also a more restrictive notion of integrable through rotations, see [ESV19,
Remark 1.3]. Beyond its remarkable flexibility, one of the fundamental insights of this strategy
is that it draws a precise relationship between the kernel of the second variation and the
logarithmic decay term in the epiperimetric inequality.

Remark 1.8. If one had a  Lojasiewicz–Simon inequality for Sobolev connections, the proof
of Theorem 1.6 could be simplified by simply flowing inwards the full trace, and not just its
projection onto the kernel. This is explained in [CSV20b, Proposition 3.1]. In particular, from
a  Lojasiewicz–Simon inequality descends a log-epiperimetric one. Unfortunately, as already
mentioned above, for Sobolev connections we only have the former in dimensions 2, 3, 4. It
would be interesting to bridge this gap.

The proof of Theorem 1.1 is inspired by work of Simon [Sim83a] and it appears in Section
5. We exploit the log-epiperimetric inequality to establish a bound for the energy density
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Θ(ρ, y;A)−YMBn(φ) at all dyadic scales, which can then be converted to a bound at all scales.
Uniqueness of the tangent map then follows by a standard Dini-type estimate that we include
in Appendix A. We deal with potential concentration phenomena in Section 6.
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Song Sun for useful discussions, and Paul Feehan for helpful correspondence. We also would
like to thank Jean E. Taylor for pointing out relevant references on the subject matter that
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Science Foundation under Grant No. DMS-1928930, while the authors were in residence at the
Simons Laufer Mathematical Sciences Institute (formerly MSRI) in Berkeley, California, during
the Fall 2024 semester. D.P. acknowledges the support of the AMS-Simons travel grant.

2. Preliminaries on the Yang–Mills functional

In this section we collect the basic definitions and properties of the Yang–Mills lagrangian.
In particular, we prove that this functional is analytic. We also introduce the class of almost
minimizers of the Yang–Mills energy, and define ω-anti-self-dual connections. We then prove
that the latter belong to the former. We prove an almost monotonicity formula resembling the
one for semicalibrated currents. We conclude by explaining the phenomenon of concentration
appearing in Theorem 1.1.

2.1. The Yang–Mills lagrangian and Yang–Mills connections.

Definition 2.1 (The Yang–Mills functional). Let G be a compact matrix Lie group with
Lie algebra g and let n ≥ 2 and let (N,h) be a smooth n-dimensional Riemannian manifold,
possibly with smooth boundary ∂N .
The Yang–Mills functional YMN : (W 1,2 ∩ L4)(N,T ∗N ⊗ g) → [0,+∞) on the trivial bundle
over N is given by

YMN (A) :=

∫
N
|FA|2 d volh ∀A ∈ (W 1,2 ∩ L4)(N,T ∗N ⊗ g),

where

FA := dA+A ∧A ∈ L2(N,∧2T ∗N ⊗ g).

Given any open subset U ⊂ N , for every A ∈ (W 1,2 ∩ L4)(N,T ∗N ⊗ g) we let

YMN (A ;U) :=

∫
U
|FA|2 d volh

be the Yang–Mills energy of A localized in U .

Definition 2.2 (Yang–Mills connections). Let G be a compact matrix Lie group with Lie
algebra g. Let n ≥ 2 and let (N,h) be a smooth n-dimensional Riemannian manifold, possibly
with smooth boundary ∂N .
A Yang–Mills connection on the trivial bundle over N is a critical point of YMN .

Definition 2.3 (YM-energy discrepancy). Let G be a compact matrix Lie group with Lie
algebra g. Let n ≥ 2 and let (N,h) be a smooth n-dimensional Riemannian manifold, possibly
with smooth boundary ∂N . Let A0 ∈ (W 1,2 ∩ L4)(N,∧1T ∗N ⊗ g). The functional YN ( · ;A0)
given by

YN (A ;A0) := YMN (A) − YMN (A0) ∀A ∈ (W 1,2 ∩ L4)(N,∧1T ∗N ⊗ g)

is called YM-energy discrepancy with respect to A0 on N .
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Proposition 2.4. Let G be a compact matrix Lie group with Lie algebra g. Let n ≥ 2 and let
(N,h) be a smooth n-dimensional Riemannian manifold, possibly with smooth boundary ∂N .
Given any A0 ∈ (W 1,2 ∩ L4)(N,∧1T ∗N ⊗ g), the following facts hold.

(i) The functional YMN is a quartic functional on (W 1,2 ∩ L4)(N,T ∗N ⊗ g), i.e. given any
A ∈ (W 1,2 ∩L4)(N,T ∗N ⊗ g) for every k = 0, 1, 2, 3, 4 there exists a k-linear and bounded
operator

∇k YMN (A) : (W 1,2 ∩ L4)(N,T ∗N ⊗ g)k → R
such that

YMN (A+ φ) =

4∑
k=0

∇k YMN (A)

k!
[φ, ..., φ︸ ︷︷ ︸
k times

] ∀φ ∈ (W 1,2 ∩ L4)(N,T ∗N ⊗ g).

(ii) The functional YM ( · ;A0) is real-analytic on (W 1,2 ∩ L4)(N,T ∗N ⊗ g) and its first and
second Fréchet differentials are given by10

∇YN (A ;A0)[φ] = 2

∫
N
⟨FA, dAφ⟩ d volh

∇2YN (A ;A0)[φ,ψ] =

∫
N

(⟨dAφ, dAψ⟩ + ⟨FA, [φ ∧ ψ]⟩) d volh

for every φ,ψ ∈ (W 1,2 ∩ L4)(N,T ∗N ⊗ g).

Proof. Since YN ( · ;A0) is simply a shift of YMN by a the constant additive factor YMN (A0),
(ii) follows directly from (i). Hence, we turn to show (i). Fix any A ∈ (W 1,2 ∩L4)(N,T ∗N ⊗ g).
Then, by direct computation, for every φ ∈W 1,2(N,T ∗N ⊗ g) we have

YMN (A+ φ) =

∫
N
|FA+φ|2 d volh

=

∫
N
|FA + dAφ+ φ ∧ φ|2 d volh

=

∫
N
|FA|2 + 2

∫
N
⟨FA, dAφ⟩ d volh +

∫
N

(
|dAφ|2 + ⟨FA, [φ ∧ φ[⟩

)
d volh

+ 2

∫
N
⟨dAφ,φ ∧ φ⟩ d volh +

∫
N
|φ ∧ φ|2 d volh .(2.1)

Let now

∇YMN (A) : (W 1,2 ∩ L4)(N,T ∗N ⊗ g) → R
∇2 YMN (A) : (W 1,2 ∩ L4)(N,T ∗N ⊗ g)2 → R
∇3 YMN (A) : (W 1,2 ∩ L4)(N,T ∗N ⊗ g)3 → R
∇4 YMN (A) : (W 1,2 ∩ L4)(N,T ∗N ⊗ g)4 → R

10Here and throughout, by dA we denote the exterior covariant derivative with respect to the connection A,
given by

dAα := dα+ [A ∧ α] = dα+A ∧ α+ α ∧A.

Moreover, we will denote by d∗A the formal L2-adjoint operator of dA.
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be given by

∇YMN (A)[φ] := 2

∫
N
⟨FA, dAφ⟩ d volh

for every φ ∈ (W 1,2 ∩ L4)(N,T ∗N ⊗ g),

∇2 YMN (A)

2!
[φ1, φ2] :=

∫
N

(
⟨dAφ1, dAφ2⟩ + ⟨FA, [φ1 ∧ φ2]⟩

)
d volh

for every φ1, φ2 ∈ (W 1,2 ∩ L4)(N,T ∗N ⊗ g),

∇3 YMN (A)

3!
[φ1, φ2, φ3] := 2

∫
N
⟨dAφ1, φ2 ∧ φ3⟩ d volh

for every φ1, φ2, φ3 ∈ (W 1,2 ∩ L4)(N,T ∗N ⊗ g) and

∇4 YMN (A)

4!
[φ1, φ2, φ3, φ4] :=

∫
N
⟨φ1 ∧ φ2, φ3 ∧ φ4⟩ d volh

for every φ1, φ2, φ3, φ4 ∈ (W 1,2 ∩ L4)(N,T ∗N ⊗ g). Notice that ∇k YMN (A) is a k-linear and
continous operator on (W 1,2 ∩ L4)(N,T ∗N ⊗ g) for every k = 1, ..., 4. Moreover, by plugging
the definitions of the operators ∇k YMN (A) in (2.1), we get

YMN (A+ φ) = YMN (A) + ∇YMN (A)[φ] +
∇2 YMN (A)

2
[φ,φ]

+
∇3 YMN (A)

3!
[φ,φ, φ] +

∇4 YMN (A)

4!
[φ,φ, φ, φ]

for every φ ∈W 1,2(N,T ∗N ⊗ g). The statement follows. □

2.2. Almost YM-energy minimizers and ω-ASD connections.

Definition 2.5 (Almost YM-energy minimizers). Let G be a compact matrix Lie group
with Lie algebra g. Let n ≥ 2 and let (N,h) be a smooth n-dimensional Riemannian manifold,
possibly with smooth boundary ∂N . We say that A ∈ (W 1,2 ∩ L4)(N,T ∗N ⊗ g) is an almost
YM-energy minimizer if there exist C,α, ρ0 > 0 such that for every geodesic open ball B ⊂ N
of radius 0 < ρ < ρ0 such that B ∩ ∂N = ∅ we have

YMN (A ; B) ≤ YMN (Ã ; B) + Cρn−4+α,(2.2)

for every Ã ∈ (W 1,2 ∩ L4)(B, T ∗B ⊗ g) with ι∗∂BÃ = ι∗∂BA.
If the previous inequality holds with C = 0, then we say that A is a YM-energy minimizer.

Definition 2.6 (ω-ASD connections). Let G be a compact matrix Lie group with Lie
algebra g. Let n ≥ 4 and let (N,h) be a smooth, oriented n-dimensional Riemannian manifold,
possibly with smooth boundary ∂N . Let ω ∈ C∞(N,∧n−4T ∗N) be a smooth (n− 4)-form on
N with unit comass, i.e. such that

∥ω∥∗ := sup{ωx(e1, ..., en−4) : x ∈ N, e1, ..., en−4 ∈ TxN with |e1 ∧ ... ∧ en−4|h = 1} = 1.

We say that A ∈ (W 1,2 ∩ L4)(N,T ∗N ⊗ g) is an ω-anti-self-dual connection (or, for short, an
ω-ASD connection) if A satisfies the following first order system of PDEs

∗FA = −FA ∧ ω.(2.3)
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Proposition 2.7. Let G, g, (N,h) and ω be as in Definition 2.6. Assume that the g-valued
1-form A ∈ (W 1,2 ∩ L4)(N,T ∗N ⊗ g) is an ω-ASD connection. Consider the (n− 4)-current
TA ∈ Dn−4(N) on N given by

⟨TA, α⟩ :=

∫
N

tr(FA ∧ FA) ∧ α ∀α ∈ Dn−4(N).

Then, TA is an (n− 4)-cycle semicalibrated by ω, satisfying

M(TA U) = ⟨TA U, ω⟩ = YMN (A ;U)(2.4)

for every U ⊂ N open set such that U ∩ ∂N = ∅, where M denotes the mass of the current (see
[Sim83b]).

Proof. First, we show that TA is a cycle. Let {Ai}i∈N ⊂ C∞(N,T ∗N ⊗g) be such that Ai → A
strongly in (W 1,2 ∩ L4)(N). This implies that

tr(FAi ∧ FAi) → tr(FA ∧ FA)

strongly in L1(N). Notice that, by the Bianchi identity

dAiFAi = dFAi + FAi ∧Ai −Ai ∧ FAi = 0,

we have

d(tr(FAi ∧ FAi)) = tr(d(FAi ∧ FAi)) = tr(dFAi ∧ FAi + FAi ∧ dFAi)

= tr((Ai ∧ FAi − FAi ∧Ai) ∧ FAi + FAi ∧ (Ai ∧ FAi − FAi ∧Ai))

= tr(Ai ∧ FAi ∧ FAi − FAi ∧ FAi ∧Ai)

= tr(FAi ∧ FAi ∧Ai) − tr(Ai ∧ FAi ∧ FAi) = 0 ∀ i ∈ N.

Fix any α ∈ Dn−5(N). By Stokes theorem, we have∫
N

tr(FAi ∧ FAi) ∧ dα = (−1)n−4

∫
N
d(tr(FAi ∧ FAi)) ∧ α = 0 ∀ i ∈ N.

Moreover∣∣∣∣ ∫
N

tr(FAi ∧ FAi) ∧ dα−
∫
N

tr(FA ∧ FA) ∧ dα
∣∣∣∣

≤ ∥dα∥L∞(N)∥ tr(FAi ∧ FAi) − tr(FA ∧ FA)∥L1(N) → 0

as i→ +∞. Thus, we get that

⟨∂TA, α⟩ =

∫
N

tr(FA ∧ FA) ∧ dα = 0.

By arbitrariness of α ∈ Dn−5(N), we conclude that ∂TA = 0.
Now we turn to show that TA is semicalibrated by ω. First, given any open set U ⊂ N such
that U ∩ ∂N = ∅ we notice that

⟨TA U, ω⟩ =

∫
U

tr(FA ∧ FA) ∧ ω =

∫
U

tr(FA ∧ FA ∧ ω) = −
∫
U

tr(FA ∧ ∗FA) = YMN (A ;U).
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Moreover, take any α ∈ Dn−4(U) such that ∥α∥∗ ≤ 1 and notice that

|⟨TA U,α⟩| ≤
∫
U
|tr(FA ∧ FA) ∧ α| ≤ ∥α∥L∞(N)

∫
U
|tr(FA ∧ FA)| d volh

≤
∫
U
|tr(FA ∧ FA)| d volh ≤

∫
U
|FA|2 d volh = YMN (A ;U).

Hence, we have

M(TA U) := sup
α∈Dn−4(U)

∥α∥∗≤1

|⟨TA U,α⟩| = ⟨TA U, ω⟩ = YMN (A ;U)

and the statement follows. □

Remark 2.8 (ω-ASD connections are almost YM-energy minimizers). By Proposition 2.7, if A
is an ω-ASD connection we immediately know that TA is an almost mass minimizing cycle in
the sense of [DLSS17c, Definition 0.1]11. This means that there exist C,α, ρ0 > 0 such that for
every geodesic open ball B ⊂ N of radius 0 < ρ < ρ0 and for every S ∈ Dn−3(N) we have

M(TA B) ≤ M((TA + ∂S) B) + Cρn−4+α.

By (2.4) we then have

YMN (A ; B) ≤ M((TA + ∂S) B) + Cρn−4+α.

Now let Ã ∈ (W 1,2 ∩ L4)(B, T ∗B ⊗ g) be such that ι∗∂BÃ = ι∗∂BA. It is not hard to show that
there exists SÃ ∈ Dn−3(N) such that

TÃ B = (TA + ∂SÃ) B.

We infer that

YMN (A ; B) ≤ M(TÃ B) + Cρn−4+α.

Exactly by the same argument that we have used in Proposition 2.7, we can show that

M(TÃ B) ≤ YMN (Ã ; B)

and we conclude that

YMN (A ; B) ≤ YMN (Ã ; B) + Cρn−4+α.

Thus, we have shown that every ω-ASD connection A is an almost YM-energy minimizer.

In the following we will need an almost monotonicity formula for almost YM-energy
minimizers on open subsets of Rn for n ≥ 5. We will obtain such a formula by essentially
following the argument developed in [DLSS17c, Proposition 2.1] for almost minimizers of
the area functional. Notice that an analogous monotonicity formula was obtained in [CW22,
Theorem 16] for ω-ASD connections. Furthermore, in the case of smooth Yang–Mills connections
the same formula is essentially due to Price [Pri83] and adapted by Tian in [Tia00, Theorem
2.1.2 and Remark 3].

11For a proof of this fact, see [DLSS17c, Proposition 0.4].
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Proposition 2.9 (Almost monotonicty formula). Let G be a compact matrix Lie group
with Lie algebra g. Let n ≥ 5 and let Ω ⊂ Rn be an open set. Let A ∈ (W 1,2 ∩ L4)(Ω, T ∗Ω ⊗ g)
be an almost YM-energy minimizer on Ω. Then, there exist C,α > 0 such that for every
0 < σ < ρ < dist(y, ∂Ω) we have

1

ρn−4

∫
Bρ(y)

|FA|2 dLn − 1

σn−4

∫
Bσ(y)

|FA|2 dLn + ρα ≥ C

∫
Bρ(y)∖Bσ(y)

1

| · |n−4
|FA νy|2 dLn,

where we have defined

νy :=
· − y

| · − y|
on Rn ∖ {y}.

Proof. Fix y ∈ Ω. Notice that for L1-a.e. 0 < r < dist(y, ∂Ω) we have

ι∗∂Br(y)
A ∈ (W 1,2 ∩ L4)(∂Br(y),∧1∂Br(y) ⊗ g).

Hence, for L1-a.e. 0 < r < dist(y, ∂Ω) we have

Ar :=

(
r

· − y

| · − y|

)∗
ι∗∂Br(y)

A ∈ (W 1,2 ∩ L4)(Br(y),∧1Br(y) ⊗ g).

and ι∗∂Br(y)
Ar = ι∗∂Br(y)

A. Thus, by the almost minimality of A (i.e. by (2.2)) and by the

coarea formula, we get

YMΩ(A ;Br(y)) ≤ YMΩ(Ar ;Br(y)) + Crn−4+α

=

∫
Br(y)

∣∣∣∣(r x− y

|x− y|

)∗
ι∗∂Br(y)

FA

∣∣∣∣2 dLn(x) + Crn−4+α

=

∫ r

0

∫
∂Bt(y)

r4

t4

∣∣∣∣ι∗∂Br(y)
FA

(
r

t
(x− y)

)∣∣∣∣2 dH n−1(x) + Crn−4+α(2.5)

=

(
1

rn−5

∫ r

0
tn−5 dL1(t)

)(∫
∂Br(y)

∣∣ι∗∂Br(y)
FA

∣∣2 dH n−1

)
+ Crn−4+α

=
r

n− 4

∫
∂Br(y)

∣∣ι∗∂Br(y)
FA

∣∣2 dH n−1 + Crn−4+α

for L1-a.e. 0 < r < dist(y, ∂Ω) and for some C,α > 0. Let f : (0,dist(y, ∂Ω)) → [0,+∞) be
given by

f(r) := YMΩ(A ;Br(y)) =

∫
Br(y)

|FA|2 dLn ∀ r ∈ (0, dist(y, ∂Ω)).

Since f is a non-decreasing function on (0, dist(y, ∂Ω)), in particular f is a function of bounded
variation and its distributional derivative Df is a positive measure on (0,dist(y, ∂Ω)). By the
Radon–Nikodym theorem, we have

Df := f ′L1 + µs,

where µs denotes the singular part of Df with respect to L1. Multiplying both sides of (2.5)
by (n− 4)r3−n and then adding Df/rn−4 to both sides of the inequality that we have obtained,
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we get(
f ′(r)

rn−4
− 1

rn−4

∫
∂Br(y)

∣∣ι∗∂Br(y)
FA

∣∣2 dH n−1

)
L1

≤ µs
rn−4

+

(
f ′(r)

rn−4
− 1

rn−4

∫
∂Br(y)

∣∣ι∗∂Br(y)
FA

∣∣2 dH n−1

)
L1

≤ Df

rn−4
− (n− 4)

f(r)

rn−3
L1 + Ĉrα−1L1

= D

(
f(r)

rn−4

)
+ Ĉrα−1L1

where the equality is intended in the sense of distributions on (0,dist(y, ∂Ω)) and we have let

Ĉ := C(n− 4). Now, fix any 0 < σ < ρ < dist(y, ∂Ω). Integrating the previous inequality on
the interval [σ, ρ) we get∫ ρ

σ

1

rn−4

(
f ′(r) −

∫
∂Br(y)

∣∣ι∗∂Br(y)
FA

∣∣2 dH n−1

)
dL1(r) ≤ C̃

(
f(ρ)

ρn−4
− f(σ)

σn−4
+ ρα

)
(2.6)

with C̃ := max{1, Ĉ}. Notice that, by the coarea formula, we have∫ ρ

σ

1

rn−4

(
f ′(r) −

∫
∂Br(y)

∣∣ι∗∂Br(y)
FA

∣∣2 dH n−1

)
dL1(r)

=

∫ ρ

σ

1

rn−4

(∫
∂Br(y)

|FA|2 dH n−1 −
∫
∂Br(y)

∣∣ι∗∂Br(y)
FA

∣∣2 dH n−1

)
dL1(r)

=

∫ ρ

σ

1

rn−4

(∫
∂Br(y)

(
|FA|2 − |ι∗∂Br(y)

FA|2
)
dH n−1

)
dL1(r)

=

∫ ρ

σ

1

rn−4

(∫
∂Br(y)

|FA νy|2 dH n−1

)
dL1(r)

=

∫
Bρ(y)∖Bσ(y)

1

| · |n−4
|FA νy|2 dLn.

(2.7)

By (2.6) and (2.7), we infer that∫
Bρ(y)∖Bσ(y)

1

| · |n−4
|FA νy|2 dLn ≤ C̃

(
f(ρ)

ρn−4
− f(σ)

σn−4
+ ρα

)
for every 0 < σ < ρ < dist(y, ∂Ω). The statement follows. □

2.3. Concentration Set. We now wish to explain the concentration phenomenon appearing
in Theorem 1.1, and for which we have to devise a Luckhaus-type analysis, cf. Section 6.
Let {Ai}i∈N be a sequence of smooth Yang–Mills connections on Ω with YM(Ai) ≤ Λ < +∞.
Then, by [Tia00, Proposition 3.1.2] there exists a subsequence {Aij} converging weakly12 to an
admissible Yang–Mills connection A. To this sequence {Ai}i∈N we can associate the following
concentration set :

Σ =
⋂
r>0

{
x ∈ Ω; lim inf

i→∞
r4−n

∫
Br(x)

|FAi |2 ≥ ε0

}
,

12Here and throughout, we will interpret weak convergence of connections in the sense of [Tia00, Section 3.1].
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where ε0 is given by [Tia00, Theorem 2.2.1]. In particular, using measure-theoretic arguments
one can then prove the bound Hn−4(Σ) ≤ C(Λ, ε0). Consider then the Radon measures
µi = |FAi |2dLn. By taking a subsequence if necessary, we may assume µi → µ weakly-* as
Radon measures on Ω. Fatou’s lemma allows us to write

µ = |FA|2dLn + ν,

for some nonnegative Radon measure ν on Ω. In other words, ν measures the defect of strong
convergence of the curvatures. We can then write the concentration set as Σ = spt ν ∪ Sing(A),
where Sing(A) is the singular set of A, i.e. the set of points at which A is not regular. Finally,
we have that ν ≡ 0 if and only if Hn−4(Σ) = 0 if and only if the curvatures converge strongly
in L2. Note that some of this analysis goes through when relaxing the regularity of the
connections Ai. The set Σ \ Sing(A) is usually referred to as the blow-up locus. We refer the
reader to [Lin99] for a similar analysis in the setting of harmonic maps.

In the case in which all the elements of the sequence {Ai}i∈N are Hermitian Yang–Mills
connections on B1(0) ⊂ Cn endowed with a Kähler form ω, with an isolated singularity, the
concentration set Σ is a complex analytic subvariety of Cn

∗ , and the blow-up locus consists
precisely of the closure of the codimension two part of Σ. See [CS20a, CS20b, CS21a, CS21b] for
further structural results on the concentration set, and blow-up locus, of Hermitian Yang–Mills
connections.

3. The slicing lemma and the Lyapunov–Schmidt reduction

The aim of this section is to set the stage for the proof of Theorem 1.6 by proving the crucial
slicing lemma, and recalling the classical Lyapunov-Schmidt reduction and adapting it to our
setting.

Definition 3.1. Let G be a compact matrix Lie group with Lie algebra g and let n ≥ 5. We
say that A ∈ (W 1,2 ∩ L4)(Bn, T ∗Bn ⊗ g) is conical if

ι∗Sn−1A ∈ (W 1,2 ∩ L4)(Sn−1, T ∗Sn−1 ⊗ g)

and

A =

(
·
| · |

)∗
ι∗Sn−1A.

Lemma 3.2 (Slicing lemma). Let G be a compact matrix Lie group with Lie algebra g and

let n ≥ 5. Let A0 ∈ (W 1,2 ∩ L4)(Sn−1, T ∗Sn−1 ⊗ g) and let Ã0 ∈ (W 1,2 ∩ L4)(Bn, T ∗Bn ⊗ g) be
the 0-homogeneous extension of A0 inside Bn, i.e.

Ã0 :=

(
·
| · |

)∗
A0.

Then, for every A ∈ (W 1,2 ∩ L4)(Bn, T ∗Bn ⊗ g) we have

YBn(A ; Ã0) ≤
∫ 1

0
YSn−1(Ψ∗

ρA ;A0)ρ
n−5 dL1(ρ) +

∫ 1

0

∫
Sn−1

|Ψ∗
ρ(FA ν0)|2 dH n−1ρn−3 dL1(ρ),

where for every ρ > 0 the map Ψρ : Sn−1 → ∂Bρ(0) is the smooth conformal diffeomorphism
given by

Ψρ(x) := ρx ∀x ∈ Sn−1.
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Moreover, in case A is conical the above simplifies to

YBn(A ; Ã0) =
1

n− 4
YSn−1(ι∗Sn−1A ;A0).

Proof. Notice that, for L1-a.e. ρ ∈ (0, 1) we have that FA ∈ L2(∂Bρ(0)) with

|FA|2 = |ι∗∂Bρ(0)
FA|2 + |FA ν0|2 on ∂Bρ(0)(3.1)

and

|FÃ0
|2 = |ι∗∂Bρ(0)

FÃ0
|2 + |FÃ0

ν0|2 on ∂Bρ(0)(3.2)

where equalities are meant in the sense of L1-functions on ∂Bρ(0). Notice that

ι∗∂Bρ(0)
FÃ0

=
1

ρ2
ι∗Sn−1FÃ0

(
·
ρ

)
=

1

ρ2
FA0

(
·
ρ

)
FÃ0

ν0 ≡ 0,

so that (3.2) becomes

|FÃ0
|2 =

1

ρ4

∣∣∣∣FA0

(
·
ρ

)∣∣∣∣2 on ∂Bρ(0)(3.3)

for L1-a.e. ρ ∈ (0, 1). By (3.1), (3.3) and by the coarea formula, we have

YBn(A ; Ã0) = YMBn(A) − YMBn(Ã0) =

∫
Bn

|FA|2 dLn −
∫
Bn

|FÃ0
|2 dLn

=

∫ 1

0

∫
∂Bρ(0)

(
|FA|2 − |FÃ0

|2
)
dH n−1 dL1(ρ)

=

∫ 1

0

∫
∂Bρ(0)

(
|ι∗∂Bρ(0)

FA|2 −
1

ρ4

∣∣∣∣FA0

(
·
ρ

)∣∣∣∣2) dH n−1 dL1(ρ)

+

∫ 1

0

∫
∂Bρ(0)

|FA ν0|2 dH n−1 dL1(ρ)

=

∫ 1

0
ρn−5

∫
Sn−1

(
|ρ2ι∗∂Bρ(0)

FA(ρ · )|2 − |FA0 |2
)
dH n−1 dL1(ρ)

+

∫ 1

0
ρn−3

∫
Sn−1

|ρFA ν0(ρ · )|2 dH n−1 dL1(ρ)

=

∫ 1

0
ρn−5

∫
Sn−1

(
|Ψ∗

ρFA|2 − |FA0 |2
)
dH n−1 dL1(ρ)

+

∫ 1

0
ρn−3

∫
Sn−1

|Ψ∗
ρ(FA ν0)|2 dH n−1 dL1(ρ)

=

∫ 1

0
YSn−1(Ψ∗

ρA ;A0)ρ
n−5 dL1(ρ) +

∫ 1

0

∫
Sn−1

|Ψ∗
ρ(FA ν0)|2 dH n−1ρn−3 dL1(ρ).

The statement follows. □

Remark 3.3. Let n ≥ 5 and assume that A0 ∈ C∞(Sn−1 ;T ∗Sn−1 ⊗ g). In order to prove
Theorem 1.6 we will need a Lyapunov–Schmidt reduction for the energy discrepancy on the
sphere Sn−1 around its smooth critical points. Nevertheless, there is a clear obstruction to
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this end that we need to face. Indeed, the second variation ∇2YSn−1( · ;A0) of YSn−1( · ;A0)
has an infinite dimensional kernel, due to the gauge invariance of YMSn−1 . To address this
problem, fix any smooth Yang–Mills connection A ∈ C∞(Sn−1 ;T ∗Sn−1 ⊗ g) and notice that A
is a smooth critical point of YSn−1( · ;A0) as well. Recall from Proposition 2.4 that

∇2YSn−1(A ;A0)[φ,ψ] =

∫
Sn−1

(⟨dAφ, dAψ⟩ + ⟨FA, [φ ∧ ψ]⟩) dH n−1,

for every φ,ψ ∈ C2,α(Sn−1, T ∗Sn−1 ⊗ g). For every φ,ψ ∈W 1,2(M,T ∗M ⊗ gP ) we can rewrite
the previous expression as

∇2YSn−1(A ;A0)[φ,ψ] = 2

∫
Sn−1

⟨LAφ,ψ⟩ dH n−1,

where LA : C2,α(Sn−1, T ∗Sn−1 ⊗ g) → C0,α(Sn−1, T ∗Sn−1 ⊗ g) is given by

LAφ := d∗AdAφ+ ∗[∗FA ∧ φ] ∀φ ∈ C2,α(Sn−1, T ∗Sn−1 ⊗ g).

Fix any smooth reference connection Ã ∈ C∞(Sn−1, T ∗Sn−1 ⊗ g) on Sn−1 and notice that

LAφ = d∗A(dφ+ [A ∧ φ]) + ∗[∗FA ∧ φ]

= d∗A(dÃφ+ [(A− Ã) ∧ φ]) + ∗[∗FA ∧ φ]

= d∗AdÃφ+ d∗A([(A− Ã) ∧ φ]) + ∗[∗FA ∧ φ]

= d∗
Ã
dÃφ− (−1)n−2[(A− Ã) ∧ dÃφ] + d∗A([(A− Ã) ∧ φ]) + ∗[∗FA ∧ φ]

= d∗
Ã
dÃφ+ TAφ,

(3.4)

where TA : C2,α(Sn−1, T ∗Sn−1 ⊗ g) → C0,α(Sn−1, T ∗Sn−1 ⊗ g) is the bounded linear operator
given by

TAφ := −(−1)n−2[(A− Ã) ∧ dÃφ] + d∗A([(A− Ã) ∧ φ]) + ∗[∗FA ∧ φ]

for every φ ∈ C2,α(Sn−1, T ∗Sn−1 ⊗ g). Hence, the leading term of LA is given by d∗
Ã
dÃ which

is not an elliptic operator. To fix this issue, we need to eliminate the gauge invariance of the
Yang–Mills lagrangian in the following way. Let

X := {A ∈ C2,α(Sn−1, T ∗Sn−1) s.t. d∗
Ã
A = 0}.

Assume that A ∈ X and notice that A is also a critical point of YSn−1( · ;A0) X and that the
second variation ∇2

XYSn−1(A· ;A0) at A of YSn−1( · ;A0) X is the second order liner elliptic

differential operator on Sn−1 given by

L̃Aφ := ∆Ãφ+ TAφ

for every φ ∈ C2,α(Sn−1, T ∗Sn−1 ⊗ g). Exploiting this fact, in what follows, we will always
consider restrictions of the energy discrepancy to suitable subspaces over which its second
variation becomes elliptic.

Lemma 3.4 (Lyapunov–Schmidt reduction for the Yang–Mills functional). Let G be

a compact matrix Lie group with Lie algebra g and let n ≥ 5. Let Ã ∈ C∞(Sn−1, T ∗Sn−1 ⊗ g)
be any smooth reference connection on Sn−1 and let

X := {A ∈ C2,α(Sn−1, T ∗Sn−1) s.t. d∗
Ã
A = 0}.
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Let A0 ∈ C∞(Sn−1, T ∗Sn−1 ⊗ g) be a smooth Yang–Mills connection such that A0 ∈ X. We
know that

K := ker∇2
XYSn−1(Ag

0 ;A0)

is a finite-dimensional linear subspace of C∞(Sn−1, T ∗Sn−1 ⊗ g)13. Let K⊥ be the orthogonal
complement of K inside L2(Sn−1, T ∗Sn−1⊗ g). Denote by PK and P⊥

K the L2-orthogonal linear

projection operators on the subspaces K and K⊥ respectively. Then, there exists an open
neighborhood U ⊂ K of 0, and an analytic function Υ: K → K⊥ such that the following facts
hold.

(i) Υ(0) = 0, and ∇Υ(0) = 0;
(ii) PK⊥(∇XYSn−1(φ+ Υ(φ))) = 0 for every φ ∈ U .
(iii) PK(∇XYSn−1(φ+ Υ(φ))) = ∇q(φ) for every φ ∈ U , where q : U → R is the analytic map

on U given by

q(φ) := φ+ Υ(φ) ∀φ ∈ U.

(iv) There exists a constant C > 0 such that very φ, η ∈ U , we have

∥∇Υ(φ)[η]∥C2,α(Sn−1) ≤ C∥η∥C0,α(Sn−1).

4. Proof of the log-epiperimetric inequality for Yang–Mills connections

As by the assumptions of Theorem 1.6, let G be a compact matrix Lie group with Lie
algebra g. Let n ≥ 5 and let A0 ∈ C∞(Sn−1, T ∗Sn−1 ⊗ g) be a smooth g-valued 1-form on
Sn−1. Let π : Bn ∖ {0} → Sn−1 be given by

π(x) :=
x

|x|
∀x ∈ Bn ∖ {0}

and let Ã0 ∈ (W 1,2 ∩L4)(Bn, T ∗Bn⊗ g) be the 0-homogeneous extension of A0 inside Bn, given
by

Ã0 := π∗A0.

Let η > 0. Fix any reference connection Ã ∈ C∞(Sn−1, T ∗Sn−1 ⊗ g) such that Ã ̸= A0 and

∥A0 − Ã∥C2,α(Sn−1) < η.

By [Weh04, Theorem 8.1 and Remark 3.2-(ii)], if η > 0 is small enough there exists a gauge
transformation g ∈ C∞(Sn−1, G) such that

d∗
Ã
Ag

0 = 0.

As before, let X ⊂ C2,α(Sn−1, T ∗Sn−1 ⊗ g) be given by

X :=
{
A ∈ C2,α(Sn−1, T ∗Sn−1 ⊗ g) s.t. d∗

Ã
A = 0

}
.

By Remark 3.3, we know that

K := ker∇2
XYSn−1(Ag

0 ;A0)

is a finite-dimensional linear subspace of C∞(Sn−1, T ∗Sn−1 ⊗ g). As in Lemma 3.4, let K⊥ be
the orthogonal complement of K inside L2(Sn−1, T ∗Sn−1⊗g). Let 0 ∈ U ⊂ K and Υ : U → K⊥

be given by the Lyapunov–Schmidt reduction (Lemma 3.4) of YSn−1( · ;A0)|X at its critical
point Ag

0. Denote by PK and PK⊥ the L2-orthogonal linear projection operators on the

13See Remark 3.3.
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subspaces K and K⊥ respectively. Fix δ > 0 and assume that A ∈ C2,α(Sn−1, T ∗Sn−1 ⊗ g) is
such that

∥A−A0∥C2,α(Sn−1) < δ.

Assuming that δ < η, we have

∥A− Ã∥C2,α(Sn−1) ≤ ∥A−A0∥C2,α(Sn−1) + ∥A0 − Ã∥C2,α(Sn−1) < 2η.

Possibly choosing η > 0 smaller, by [Weh04, Theorem 8.1] there exists h ∈ C3,α(Sn−1, G) such
that

d∗
Ã
Ah = 0.

Let φA := Ah −Ag
0 ∈ C2,α(Sn−1, T ∗Sn−1 ⊗ g) and notice that

d∗
Ã
φA = 0,

so that φA ∈ X. By the properties of the Lyapunov–Schmidt reduction, for δ > 0 sufficiently
small we have

PKφA ∈ U.

Thus, we can write

φA = PKφA + PK⊥φA

= PKφA + Υ(PKφA) + (PK⊥φA − Υ(PKφA))

= PKφA + Υ(PKφA) + φ⊥
A,

where we have defined

φ⊥
A := PK⊥φA − Υ(PKφA) ∈ K⊥.

By Remark 3.3, the second variation ∇2
XYSn−1(Ag

0 ;A0) is induced by an elliptic operator LY

on a compact manifold. Since every elliptic operator on a compact manifold has compact
resolvent, by the spectral theory for operators with compact resolvent we know that there exist
a countable orthonormal basis {ϕj}j∈N ⊂ C∞(Sn−1, T ∗Sn−1 ⊗ g) of L2(Sn−1, T ∗Sn−1 ⊗ g) and

countably many real numbers14 {λj}j∈N such that

LY ϕj = λjϕj ∀ j ∈ N.

Moreover, every eigenvalue λj of LY has finite multiplicity. We let

ℓ := dimK < +∞

and we assume that the eigenfunctions ϕj are ordered in such a way that the set {ϕ1, ..., ϕℓ}
forms an orthonormal basis of K. Define the index sets

J+ := {j ∈ N : λj > 0} and J− := {j ∈ N : λj < 0},

and we let {aj}j∈J−∪J+ ⊂ R and {b1, ..., bℓ} ⊂ R be such that

φ⊥
A =

∑
j∈J−

ajϕj +
∑
j∈J+

ajϕj =: φ⊥
A,− + φ⊥

A,+, and PKφA =
ℓ∑

j=1

bjϕj .

14This follows from the symmetry of ∇2
XYSn−1(0 ;A0), which translates in the L2 self-adjointness of LY .
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Since PKφA ∈ U and U is an open set, there exists ξ > 0 with Bℓ
ξ(b) ⊂ Rℓ such that for every

x = (x1, ..., xℓ) ∈ Bℓ
ξ(b) we have

ℓ∑
j=1

xjϕj ∈ U.

Let f : Bℓ
ξ(b) ⊂ Rℓ → R be the real-analytic function given by

f(x) := YSn−1

( ℓ∑
j=1

xjϕj + Υ

( ℓ∑
j=1

xjϕj

)
;A0

)
∀x ∈ Bℓ

ξ(b).(4.1)

Let t0 ∈ (0, 1) and let v : [0, t0] → Bℓ
ξ(b) be the smooth vector field on Bℓ

ξ(b) solving on [0, t0]

the following normalized gradient flow equation for f with initial condition b = (b1, ..., bℓ) ∈ Rℓ:

v′(t) =

− ∇f(v(t))

|∇f(v(t))|
if f(v(t)) >

f(b)

2
0 otherwise;

v(0) = b.

Note that this is a finite dimensional Yang–Mills heat flow. Let then η, η+ : [0, 1] → R be the
cut-off functions given by

η(ρ) := εff(b)1−γ
√
n− 2C(1 − ρ) and η+(ρ) := 1 − (1 − ρ)αε,(4.2)

for all ρ ∈ [0, 1], and where ε, εf , C, α > 0 and γ ∈ [0, 1) are parameters to be chosen later in
the proof. For now we just assume that

εff(b)1−γ√nC < t0

so that 0 ≤ η < t0. Then, let µ : Bn ∖ {0} → π∗T ∗Sn−1 ⊗ g be given by

µ(x) :=
ℓ∑

j=1

vj(η(|x|))ϕj(π(x)) ∀x ∈ Bn ∖ {0}.

Define φÂ ∈ (W 1,2 ∩ L4)(Bn, T ∗Bn ⊗ g) by

φÂ(x) := µ(x)[dπ(x)] + Υ(µ(x))[dπ(x)] + (π∗φ⊥
A,−)(x) + η+(|x|)(π∗φ⊥

A,+)(x)(4.3)

for every x ∈ Bn ∖ {0}. Lastly, let h̃ := π∗h ∈ (W 2,2 ∩W 1,4)(Bn, G) and define the competitor

Â ∈ (W 1,2 ∩ L4)(Bn, T ∗Bn ⊗ g) to be

Â := (π∗Ag
0 + φÂ)h̃

−1
.

Notice then that

ι∗Sn−1Â = (Ag
0 + PKφA + Υ(PKφA) + φ⊥

A,− + φ⊥
A,+)h

−1
= (Ag

0 + φA)h
−1

= A.
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By Lemma 3.2, we have the bound

YBn(Â ; Ã0)−(1 − ε)YBn(Ã ; Ã0)

≤
∫ 1

0

(
YSn−1(Ψ∗

ρÂ ;A0) − (1 − ε)YSn−1(A ;A0)
)
ρn−5 dL1(ρ)

+

∫ 1

0

∫
Sn−1

|Ψ∗
ρ(FÂ ν0)|2 dH n−1ρn−3 dL1(ρ)

:= I + II,

(4.4)

where we defined

I :=

∫ 1

0

(
YSn−1(Ψ∗

ρÂ ;A0) − (1 − ε)YSn−1(A ;A0)
)
ρn−5 dL1(ρ),

as well as

II :=

∫ 1

0

∫
Sn−1

|Ψ∗
ρ(FÂ ν0)|2 dH n−1ρn−3 dL1(ρ).

Notice that, since π∗Ag
0 is a conical connection, we have

|Ψ∗
ρ(FÂ ν0)| = |Ψ∗

ρ(Fπ∗Ag
0+φÂ

ν0)| = |Ψ∗
ρ(FφÂ

ν0)|.(4.5)

Moreover, by analogous reasons, we have

(φÂ ∧ φÂ) ν0 = 0

which implies that

|Ψ∗
ρ(FφÂ

ν0)|2 = |Ψ∗
ρ(dφÂ ν0)|2

≤ Ĉ
(
(η′(ρ))2(1 + ∥∇Υ(v)[v′]∥2L∞(0,t0)

) + (η′+(ρ))2|φ⊥
A,+|2

)
,

(4.6)

for some constant Ĉ > 0 depending only on A0. Let CF > 0 be the constant given by Lemma
3.4-(iv). By plugging the estimate given by Lemma 3.4-(iv) in (4.6) we get

|Ψ∗
ρ(FφÂ

ν0)|2 ≤ Ĉ(1 + C2
F )(η′(ρ))2 + Ĉ(η′+(ρ))2|φ⊥

A,+|2.(4.7)

Combining (4.5) and (4.7) we obtain

II =

∫ 1

0

∫
Sn−1

|Ψ∗
ρ(FÂ ν0)|2 dH n−1ρn−3 dL1(ρ)

=

∫ 1

0

∫
Sn−1

|Ψ∗
ρ(FφÂ

ν0)|2 dH n−1ρn−3 dL1(ρ)

≤
∫ 1

0

∫
Sn−1

(
Ĉ(1 + C2

F )(η′(ρ))2 + Ĉ(η′+(ρ))2|φ⊥
A,+|2

)
ρn−3 dL1(ρ)

= Ĉ(1 + C2
F )H n−1(Sn−1)

∫ 1

0
ε2ff(b)2−2γC2(n− 2)ρn−3 dL1(ρ)

+ Ĉ∥φ⊥
A,+∥2L2(Sn−1)

∫ 1

0
ε2α2ρn−3 dL1(ρ)

≤ C̃
(
ε2ff(b)2−2γ + ε2∥φ⊥

A,+∥2L2(Sn−1)

)
,

(4.8)
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where we have let

C̃ := Ĉ

(
(1 + C2

F )H n−1(Sn−1)C2 +
α2

n− 2

)
.

We can now turn to estimate the first term I. Notice that we can write

YSn−1(Ψ∗
ρÂ ;A0) − (1 − ε)YSn−1(A ;A0)

= YSn−1(Ψ∗
ρÂ ;A0) − YSn−1(Ag

0 + Ψ∗
ρ(µ[dπ] + Υ(µ)[dπ]) ;A0)

− (1 − ε) (YSn−1(Ag
0 + φA ;A0) − YSn−1(Ag

0 + PKφA + Υ(PKφA);A0))

+ YSn−1(Ag
0 + Ψ∗

ρ(µ[dπ] + Υ(µ)[dπ]) ;A0)

− (1 − ε)YSn−1(Ag
0 + PKφA + Υ(PKφA) ;A0)

= YSn−1(Ag
0 + Ψ∗

ρφÂ ;A0) − YSn−1(Ag
0 + µ(ρ · ) + Υ(µ(ρ · )) ;A0)

− (1 − ε) (YSn−1(Ag
0 + φA ;A0) − YSn−1(Ag

0 + PKφA + Υ(PKφA);A0))

+ YSn−1(Ag
0 + µ(ρ · ) + Υ(µ(ρ · )) ;A0)

− (1 − ε)YSn−1(Ag
0 + PKφA + Υ(PKφA) ;A0)

= III + IV

where we defined

III = YSn−1(Ag
0 + Ψ∗

ρφÂ ;A0) − YSn−1(Ag
0 + µ(ρ · ) + Υ(µ(ρ · )) ;A0)

− (1 − ε) (YSn−1(Ag
0 + φA ;A0) − YSn−1(Ag

0 + PKφA + Υ(PKφA) ;A0)) ,

and

IV = YSn−1(Ag
0 + µ(ρ · ) + Υ(µ(ρ · )) ;A0)

− (1 − ε)YSn−1(Ag
0 + PKφA + Υ(PKφA) ;A0).

Letting now

(4.9) ψρ := Ψ∗
ρφÂ − µ(ρ · ) − Υ(µ(ρ · ))

and, by Taylor expanding around Ag
0, we deduce

III = ∇YSn−1(Ag
0 + µ(ρ · ) + Υ(µ(ρ · )) ;A0)[ψρ]

+
1

2
∇2YSn−1(Ag

0 + µ(ρ · ) + Υ(µ(ρ · ) + s1ψρ) ;A0)[ψρ, ψρ]

− (1 − ε)∇YSn−1(Ag
0 + PKφA + Υ(PKφA) ;A0)[φ

⊥
A]

− 1 − ε

2
∇2YSn−1(Ag

0 + PKφA + Υ(PKφA) + s2φ
⊥
A ;A0)[φ

⊥
A, φ

⊥
A]

=
1

2
∇2YSn−1(Ag

0 + µ(ρ · ) + Υ(µ(ρ · ) + s1ψρ) ;A0)[ψρ, ψρ]

− 1 − ε

2
∇2YSn−1(Ag

0 + PKφA + Υ(PKφA) + s2φ
⊥
A ;A0)[φ

⊥
A, φ

⊥
A]

for some s1, s2 ∈ [0, 1], where in the second equality we have used that ψρ, φ
⊥
A ∈ K⊥ and

Lemma 3.4-(ii). By using the analyticity of YSn−1( · ;A0) around Ag
0, and in particular the fact
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that its second variation is locally Lipschitz around Ag
0 (it is actually smooth around such

point), we get that there exists L > 0 such that

|∇2YSn−1(ξ)[ζ, ζ] −∇2YSn−1(0)[ζ, ζ]| ≤ L∥ξ∥C2,α(Sn−1)∥ζ∥2L2(Sn−1)

for every ζ ∈ C2,α(Sn−1, T ∗Sn−1 ⊗ g) and ξ ∈ C2,α(Sn−1, T ∗Sn−1 ⊗ g) sufficiently close to Ag
0

in the C2,α-norm. Thus, we get

III ≤ 1

2
∇2YSn−1(Ag

0 ;A0)[ψρ, ψρ] − 1 − ε

2
∇2YSn−1(Ag

0 ;A0)[φ
⊥
A, φ

⊥
A]

+ L∥µ(ρ · ) + Υ(µ(ρ · )) + s1ψρ∥C2,α(Sn−1)∥ψρ∥2L2(Sn−1)

+ L∥PKφA + Υ(PKφA) + s2φ
⊥
A∥C2,α(Sn−1)∥φ⊥

A∥2L2(Sn−1)

≤ 1

2
∇2YSn−1(Ag

0 ;A0)[ψρ, ψρ] − 1 − ε

2
∇2YSn−1(Ag

0 ;A0)[φ
⊥
A, φ

⊥
A]

+ L∥µ(ρ · ) + Υ(µ(ρ · )) + s1ψρ∥C2,α(Sn−1)∥ψρ∥2L2(Sn−1)

+ L
(
∥PKφA∥C2,α(Sn−1) + ∥φ⊥

A∥C2,α(Sn−1)

)
∥φ⊥

A∥2L2(Sn−1).

(4.10)

Notice that, by definition of ψρ, we have

ψρ := Ψ∗
ρφÂ − µ(ρ · ) − Υ(µ(ρ · )) = (φ⊥

A,−)(x) + η+(|x|)(φ⊥
A,+)(x).

Hence,

1

2
∇2YSn−1(Ag

0 ;A0)[ψρ, ψρ] − 1 − ε

2
∇2YSn−1(Ag

0 ;A0)[φ
⊥
A, φ

⊥
A]

=
ε

2
∇2YSn−1(Ag

0 ;A0)[φ
⊥
A,−, φ

⊥
A,−] +

η2+(ρ) − (1 − ε)

2
∇2YSn−1(Ag

0 ;A0)[φ
⊥
A,+, φ

⊥
A,+]

(4.11)

and

∥µ(ρ · ) + Υ(µ(ρ · )) + s1ψρ∥C2,α(Sn−1)∥ψρ∥2W 1,2(Sn−1)

≤ C
(
∥µ(ρ · )∥C2,α(Sn−1) + ∥φ⊥

A∥C2,α(Sn−1)

)
∥φ⊥

A∥2L2(Sn−1).
(4.12)

By plugging (4.11) and (4.12) in (4.10) we get

III ≤ ε

2
∇2YSn−1(Ag

0 ;A0)[φ
⊥
A,−, φ

⊥
A,−] +

η2+(ρ) − (1 − ε)

2
∇2YSn−1(Ag

0 ;A0)[φ
⊥
A,+, φ

⊥
A,+]

+ C
(
∥µ(ρ · )∥C2,α(Sn−1) + ∥PKφA∥C2,α(Sn−1) + 2∥φ⊥

A∥C2,α(Sn−1)

)
∥φ⊥

A∥2L2(Sn−1).

(4.13)

By definition of η+, cf. (4.2), up to choosing α > 0 big enough depending on n ≥ 5 there exists
a constant c > 0 depending on n such that∫ 1

0
(η2+(ρ) − (1 − ε))ρn−5 dρ ≤ −c ε.
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Consequently, multiplying (4.13) by ρn−5 and integrating it with respect to ρ, we infer

∫ 1

0
III ρn−5 dL1(ρ)

≤ εmax
λj<0

λj∥φ⊥
A,−∥2L2(Sn−1) − c ε min

λj>0
λj∥φ⊥

A,+∥2L2(Sn−1)

+ C
(
∥µ(ρ · )∥C2,α(Sn−1) + ∥PKφA∥C2,α(Sn−1) + ∥φ⊥

A∥C2,α(Sn−1)

)
∥φ⊥

A∥2L2(Sn−1)

≤ −
(
CA0ε− C

(
∥µ(ρ · )∥C2,α(Sn−1) + ∥PKφA∥C2,α(Sn−1) + ∥φ⊥

A∥C2,α(Sn−1)

))
∥φ⊥

A∥2L2(Sn−1),

(4.14)

where CA0 > 0 is a constant depending only on n and the spectral gap of the second variation,
thus implying that it depends on A0. We remark that here we need n ≥ 5 to have finiteness of

the term
∫ 1
0 ρ

n−5dρ. Notice now that using Stokes’ theorem, we infer the following pointwise
bound

|µ(ρ · ) − PK(φA)| ≤
∫ η(ρ)

0
|d(µ(t · ))| dt ≤ |η(ρ)| ≤ Cεff(b)γ ,

as well as

|dµ(ρ · )| ≤ εff(b)γ ,

so that choosing εf sufficiently small, and combining these estimates with elliptic regularity, we
have the estimate

∥µ(ρ · )∥C2,α(Sn−1) ≤ 2∥PKφA∥C2,α(Sn−1).

Whence, choosing δ > 0 sufficiently small (depending on CA0) and plugging ∥φA∥C2,α(Sn−1) < δ
in (4.14), we infer

(4.15)

∫ 1

0
III ρn−5 dρ ≤ −CA0ε∥φ⊥

A∥2L2(Sn−1).

We are now left with estimating IV. To this sake, we record  Lojasiewicz’s inequality for analytic
function in Rl, cf. [Loj65].

Lemma 4.1. Consider an open set U ⊂ Rl, and an analytic function h : U → R. For every
critical point x ∈ U of h, there exist a neighborhood V of x, an exponent γ ∈ (0, 1/2], and a
constant K such that

|h(x) − h(y)|1−γ ≤ K|∇h(y)|,
for all y ∈ V .

In particular, we can apply Lemma 4.1 to f defined in (4.1), and infer the existence of a
neighborhood V of the origin, constants K > 0 and γ ∈ (0, 1/2] depending on A0 and the
dimension n such that |f(v)|1−γ ≤ K|∇f(v)|, for every v ∈ V . Consequently, if f(v(s)) > 0,
for 0 < s < t, we have

(4.16) f(v(t))−f(v(0)) = f(v(t))−f(b) =

∫ t

0
∇f(v(τ)) ·v′(τ) dτ = −

∫ t

0
|∇f(v(τ))| dτ ≤ 0,

which in turn implies that the function t 7→ f(v(t)) is non-increasing, so that there exists τ > 0
such that f(v(t)) ≥ f(b)/2 > 0, for 0 ≤ t ≤ τ , and f(v(t)) ≤ f(b)/2 if t ≥ τ . If η(ρ) ≤ τ , we
have the following

IV = f(v(η(ρ))) − (1 − ε)f(b)
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≤ −
∫ η(ρ)

0
|∇f(v(τ))| dτ + εf(b) from (4.16)

≤ −K
∫ η(ρ)

0
|f(v(τ))|1−γ dτ + εf(b) from Lemma 4.1

≤ −Kf(v(η(ρ)))1−γη(ρ) + εf(b) monotonicity of f

≤ − K

21−γ
f(b)1−γη(ρ) + εf(b) definition of τ

≤ −
(
K

2
η(ρ) − εf(b)γ

)
f(b)1−γ .

Otherwise, if η(ρ) > τ , we have

IV = f(v(η(ρ))) − (1 − ε)f(b) < −
(

1

2
− ε

)
f(b) < −(η(ρ) − εf(b)γ)f(b)1−γ ,

where for the last inequality we used the inequality |η| ≤ Cεff(b)1−γ < 1/2 which holds as
long as f(b) is small enough. By letting

K̃ := min

{
K

2
, 1

}
we obtain

IV ≤ −(K̃η(ρ) − εf(b)γ)f(b)1−γ ,

and this concludes the estimate for IV.
We are now able to finish the proof of Theorem 1.6. We have two cases.

(a) First, assume f(b)1/2 < ν∥φ⊥
A∥L2(Sn−1), for some universal constant ν depending only on

A0, and potentially the gauge g which in turn depends on A0, and the dimension n. In
this case, let εf = 0, so that η ≡ 0, and IV = εf(b). In particular, from (4.4), (4.8) and
(4.15), we deduce

YBn(Â ; Ã0) − (1 − ε)YBn(Ã ; Ã0)

≤ −CA0ε∥φ⊥
A∥2L2(Sn−1) + Ĉε2∥φ⊥

A,+∥2L2(Sn−1) + εf(b)

≤ −(CA0 − ν − Ĉε)ε∥φ⊥
A∥L2(Sn−1) < 0,

where the last inequality follows by choosing ε and ν appropriately.
(b) Otherwise, we set ε = εff(b)1−γ for some εf sufficiently small depending only on n and u0,

allowing us to estimate IV as follows:∫ 1

0
IV ρn−5 dρ ≤ −f(b)1−γ

∫ 1

0
(K̃η(ρ) − εf(b)γ)ρn−5 dρ

= −εff(b)2−2γ

∫ 1

0
(K̃C

√
n(1 − ρ) − f(b)γ)ρn−5 dρ

≤ −K̂εff(b)2−2γ ,

for some constant K̂ > 0, upon taking C > 0 larger if necessary. Then, from this inequality,
combined with (4.4), (4.8) and (4.15) we infer

YBn(Â ; Ã0) − (1 − ε)YBn(Ã ; Ã0)
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≤ −CA0ε∥φ⊥
A∥2L2(Sn−1) − K̂εff(b)2−2γ + Ĉ

(
ε2ff(b)2−2γ + ε2∥φ⊥

A,+∥2L2(Sn−1)

)
≤ −(CA0ε− ε2)∥φ⊥

A∥2L2(Sn−1) − (K̂εf − Ĉε2f )f(b)2−2γ < 0,

where the last inequality follows by choosing εf small enough and the fact that f(b) > 0.
Thus, we infer

YBn(Â ; Ã0) =
1

n− 4
YSn−1(A ;A0)

=
1

n− 4
YSn−1(A ;A0)

− 1

n− 4
YSn−1(Ag

0 + PKφA + Υ(PKφA) ;A0)

+
1

n− 4
YSn−1(Ag

0 + PKφA + Υ(PKφA) ;A0)

≤ CA0∥φ⊥
A∥2L2(Sn−1) + f(b)

≤
(
CA0ν

−2 + 1
)
f(b),

where, in order, we used the slicing Lemma 3.2, a Taylor expansion, and the hypothesis of
case (b). Combining the above two inequalities we can conclude the desired log-epiperimetric
inequality (upon relabelling the various quantities involved):

YBn(Â ; Ã0) ≤
(
1 − ε|YBn(Ã ; Ã0)|γ

)
YBn(Ã ; Ã0),

where εf depends only on the dimension n and u0.

4.1. The integrable case. We now specialise the proof of Theorem 1.6 to the case of an
integrable cone. We start by recalling from [AS88] this notion. Note that Adams and Simon
refer to this property as integrability of the kernel (of the second variation associated to the
cone). We will say that K := ker∇2

XYSn−1(Ag
0 ;A0) is integrable if for every v ∈ K, there

exists a family {As}s∈(0,1) ⊂ C∞(Sn−1, T ∗Sn−1 ⊗ g) with As → 0 in C∞(Sn−1, T ∗Sn−1 ⊗ g),

such that ∇XYSn−1(As ;A0) = 0 for every s ∈ (0, 1), and lims→0As/s = v in the L2-sense. In
this setting, analyticity of f defined in (4.1) implies the following lemma, whose proof can be
found in [AS88, Lemma 1], or [ESV19, Lemma 2.3].

Lemma 4.2. The integrability condition holds for ker∇2
XYSn−1(Ag

0 ;A0) if and only if f ≡ f(0)
in a neighborhood of 0.

It is immediate from this lemma that in the proof of the log-epiperimetric inequality we can
take γ = 0, thus obtaining an epiperimetric inequality. The geometric significance of being
integrable for a connection A0 is the following: A0 has an integrable neighborhood in the
moduli space of smooth Yang–Mills connections on the sphere Sn−1 with tangent space at A0

being given by Jacobi fields at it, i.e., solutions of the linearised operator.

5. Proof of the uniqueness of tangent cones with isolated singularities

As by the statement of Theorem 1.1, let G be a compact matrix Lie group with Lie algebra
g. Let n ≥ 5 and let Ω ⊂ Rn be an open set. Let A ∈ (W 1,2 ∩ L4)(Ω, T ∗Ω ⊗ g) be either a
YM-energy minimizer or an ω-ASD connection with respect to some smooth semicalibration ω
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on Ω. Assume that H n−4(Sing(A) ∩K) < +∞ for every compact K ⊂ Ω. Let y ∈ Sing(A).
For every ρ ∈ (0,dist(y, ∂Ω)/2), define Ay,ρ ∈ (W 1,2 ∩ L4)(B2(0),∧1B2(0) ⊗ g) as

Ay,ρ := τ∗y,ρA,

where τy,ρ(x) = ρx+ y is the usual rescaling of factor ρ > 0 centered at y. Let φ be a tangent
cone for A at y which is smooth on B2(0)∖ {0} and such that there exists {ρi}i∈N be satisfying
Ay,ρi ⇀ φ weakly and FAy,ρi

→ Fφ strongly in L2 as i→ +∞ (modulo gauge transformations).

Let ε, δ > 0 and γ ∈ [0, 1) be the constants given by Theorem 1.6 for A0 = ι∗Sn−1φ. By the
ε-regularity statements in [CW22, Theorem 2] (see also [Tia00] for the energy minimizing case),
following the same argument as in [Sim12, Section 3.15] we conclude that the convergence of
{Ay,ρi}i∈N to φ is strong in C∞ (modulo gauge transformations) on every compact subset K
of B2(0) ∖ {0}. Hence, there exists i ∈ N big enough so that

∥Ay,ρi − φ∥C2,α(Sn−1) ≤ ∥Ay,ρi − φ∥C2,α(B 3
2
(0)∖B 3

4
(0)) < δ

for every 0 < ρ ≤ ρi. Define ρ̃ := ρi. Fix any k ∈ N. As in [ESV19, Lemma 3.3], we know that
for every ρ ∈ [ρ̃/2k+1, ρ̃/2k] it holds

∥Ay,ρ − φ∥C2,α(Sn−1) ≤ ∥Ay,ρ − φ∥C2,α(B 3
2
(0)∖B 3

4
(0)) < δ

Thus, by Theorem 1.6, there exists Âρ ∈ (W 1,2 ∩ L4)(Bn, T ∗Bn ⊗ g) such that

ι∗Sn−1Âρ = ι∗Sn−1Ay,ρ

and

YBn(Âρ ;φ) ≤
(
1 − ε|YBn(Ãρ ;φ)|γ

)
YBn(Ãρ ;φ).

Notice that, since Ay,ρ is almost YM-energy minimizing, for some C0, α0 > 0 we have

Θ(ρ, y;A) − YMBn(φ) = YMBn(Ay,ρ) − YMBn(φ)

≤ YMBn(Âρ) − YMBn(φ) + C0ρ
α0

= YBn(Âρ ;φ) + C0ρ
α0

≤
(
1 − ε|YBn(ũρ ;φ)|γ

)
YBn(Ãρ ;φ) + C0ρ

α0(5.1)

for every ρ ∈ (ρ̃/2k+1, ρ̃/2k), where Ãρ ∈ (W 1,2 ∩ L4)(Bn, T ∗Bn ⊗ g) is the 0-homogeneous
extension of Ay,ρ inside Bn. Let

f(ρ) := ρn−4 (Θ(ρ, y;A) − YMBn(φ)) =

∫
Bρ(y)

|FA|2 dLn − YMBn(φ)ρn−4 ∀ ρ ∈ [0, 1).

Notice that by Proposition 2.9 we have that [0, 1) ∋ ρ 7→ f(ρ) is an (almost) non-decreasing
function of ρ. Hence, f is differentiable L1-a.e. and its distributional derivative is a measure
whose absolutely continous part (with respect to L1) coincides L1-a.e. with the classical
differential and whose singular part is non negative. Thus, we have

f ′(ρ) ≥
∫
∂Bρ(y)

|FA|2 dH n−1 − (n− 4) YMBn(φ)ρn−5

= ρn−1

∫
Sn−1

|FA(ρ · +y)|2 dH n−1(x) − (n− 4) YMBn(φ)ρn−5
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= ρn−5

(∫
Sn−1

|ρ2FA(ρ · +y)|2 dH n−1(x) − (n− 4) YMBn(φ)

)

= ρn−5

(∫
Sn−1

|FAy,ρ |2 dH n−1(x) − (n− 4) YMBn(φ)

)
= ρn−5(n− 4)

(
YMBn(Ãρ) − YMBn(φ)

)
= ρn−5(n− 4)YBn(Ãρ ;φ) for L1-a.e. ρ ∈ (0, 1),

which can be rewritten as

ρn−4YBn(Ãρ ;φ) ≤ ρ

n− 4
f ′(ρ) for L1-a.e. ρ ∈ (0, 1).(5.2)

By plugging (5.2) in (5.1) we get

f(ρ) = ρn−4 (Θ(ρ, y;A) − YMBn(φ))

≤
(
1 − ε|YBn(Ãρ ;φ)|γ

)
ρn−4YBn(Ãρ ;φ) + C0ρ

n−4+α0

≤
(
1 − ε|YBn(Ãρ ;φ)|γ

) ρ

n− 4
f ′(ρ) + C0ρ

n−4+α0 , for L1-a.e. ρ ∈ (ρ̃/2k+1, ρ̃/2k).(5.3)

Moreover, since Ay,ρ is almost YM-energy minimizing, we have

e(ρ) :=
f(ρ)

ρn−4
= Θ(ρ, y;A) − YMBn(φ)

=
1

ρn−4

∫
Bρ(y)

|FA|2 dLn − YMBn(φ)

= YMBn(Ay,ρ) − YMBn(φ)

≤ YMBn(Ãρ) − YMBn(φ) + C0ρ
α0

= YBn(Ãρ ;φ) + C0ρ
α0

≤ YBn(Ãρ ;φ) + C0ρ
α0 .(5.4)

Hence, by combining (5.3) and (5.4) and letting ε̃ = ε/2 we get

f(ρ) ≤
(
1 − ε̃|e(ρ) − C0ρ

α0 |γ
) ρ

n− 2
f ′(ρ) + C0ρ

n−4+α0 , for L1-a.e. ρ ∈ (ρ̃/2k+1, ρ̃/2k).

Arguing as in [ESV19, Section 3.2, Step 1] we get

e(ρ) ≤ 2

(
− ε̃C(n, γ) log

(
ρ

ρ̃

))− 1
γ

∀ ρ ∈ [ρ̃/2k+1, ρ̃/2k],

for some constant C(n, γ) > 0 depending only on n and γ. Since we have chosen k ∈ N
arbitrarily and for every ρ ∈ (0, ρ̃) there exists k ∈ N such that ρ ∈ [ρ̃/2k+1, ρ̃/2k], we have
established that

Θ(ρ, y;A) − Θ(y ;A) ≤ e(ρ) ≤ 2

(
− ε̃C(n, γ) log

(
ρ

ρ̃

))− 1
γ

∀ ρ ∈ (0, ρ̃).(5.5)
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The uniqueness of tangent map to u at y then follows directly by Proposition A.1 with ρ0 := ρ̃/2
and

ϕ(ρ) := 2

(
− ε̃C(n, γ) log

(
ρ

ρ̃

))− 1
γ

∀ ρ ∈ (0, ρ̃/2).

6. Non-concentration cases: a Luckhaus type lemma for connections

In this section we deal with the possibility of concentration of measures. We start by proving
the following Luckhaus type lemma for Sobolev connections in dimension n ≥ 5.

Lemma 6.1 (Luckhaus type lemma for connections). Let G be a compact matrix Lie

group with Lie algebra g. Let n ≥ 5, ρ ∈ (0, 1) and λ ∈ (0, 1/2). Let A1 ∈W 1,n−1
2 (Sρ, T ∗Bρ⊗g),

A2 ∈W 1,n−1
2 (S(1−λ)ρ, T

∗B(1−λ)ρ ⊗ g).

Then, there exists Aλ ∈ W 1,n
2 (Bρ ∖ B(1−λ)ρ, T

∗(Bρ ∖ B(1−λ)ρ) ⊗ g) such that Aλ|Sρ = A1,
Aλ|S(1−λ)ρ

= A2 and for some constant K > 0 we have∫
Bρ∖B(1−λ)ρ

|FAλ
|2 dLn ≤ Kλ

n−4
n

(∫
Sρ

(
|∇A1|

n−1
2 + |A1|n−1

)
dH n−1

+

∫
S(1−λ)ρ

(
|∇A2|

n−1
2 + |A2|n−1

)
dH n−1

) 4
n

.

Proof. Recall the continuous Sobolev embeddings

W 1,n−1
2 (Sρ) ↪→W 1− 2

n
,n
2 (Sρ) and W 1,n−1

2 (S(1−λ)ρ) ↪→W 1− 2
n
,n
2 (S(1−λ)ρ).(6.1)

Let Ã1 ∈ W 1,2(Bρ, T
∗Bρ ⊗ g) and Ã2 ∈ W 1,2(B(1−λ)ρ, T

∗B(1−λ)ρ ⊗ g) be componentwise
harmonic extensions of A1 and A2 respectively. By (6.1) and standard elliptic regularity theory,
we have

Ã1 ∈W 1,n
2 (Bρ, T

∗Bρ ⊗ g) and Ã2 ∈W 1,n
2 (B(1−λ)ρ, T

∗B(1−λ)ρ ⊗ g)

with the following estimates∫
Bρ

(
|∇Ã1|

n
2 + |Ã1|n

)
dLn ≤ K

∫
Sρ

(
|∇A1|

n−1
2 + |A1|n−1

)
dH n−1

∫
B(1−λ)ρ

(
|∇Ã2|

n
2 + |Ã2|n

)
dLn ≤ K

∫
S(1−λ)ρ

(
|∇A2|

n−1
2 + |A2|n−1

)
dH n−1.

Define Â2 ∈W 1,n
2 (Bρ ∖ B(1−λ)ρ, T

∗(Bρ ∖ B(1−λ)ρ) ⊗ g) by

Â2 :=

(
((1 − λ)ρ)2

| · |2
·
)∗
Ã2 on Bρ ∖ B(1−λ)ρ.

Notice that Â2|S(1−λ)ρ
= A2 and∫

Bρ∖B(1−λ)ρ

(
|∇Â2|

n
2 + |Â2|n

)
dLn ≤

∫
B(1−λ)ρ

(
|∇Ã2|

n
2 + |Ã2|n

)
dLn

≤ K

∫
S(1−λ)ρ

(
|∇A2|

n−1
2 + |A2|n−1

)
dH n−1.
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Define φλ : Rn → Rn by

φλ(x) :=

(
|x|
λρ

− 1 − λ

λ

)
x ∀x ∈ Rn.

Define Aλ ∈W 1,n
2 (Bρ ∖ B(1−λ)ρ, T

∗(Bρ ∖ B(1−λ)ρ) ⊗ g) by

Aλ := φ∗
λÃ1 + ( · − φλ)∗Â2 on Bρ ∖ B(1−λ)ρ.

Notice that since all the norms involved are conformally invariant and φλ is a conformal map,
we have ∫

Bρ∖B(1−λ)ρ

|FAλ
|
n
2 dLn ≤ K

(∫
Bρ∖B(1−λ)ρ

|dÃ1|
n
2 dLn +

∫
Bρ∖B(1−λ)ρ

|dÂ2|
n
2 dLn

+

∫
Bρ∖B(1−λ)ρ

|Ã1|n dLn +

∫
Bρ∖B(1−λ)ρ

|Â2|n dLn

+ 2

∫
Bρ∖B(1−λ)ρ

|Ã1|
n
2 · |Â2|

n
2 dLn

)
≤ K

(∫
Sρ

(
|∇A1|

n−1
2 + |A1|n−1

)
dH n−1

+

∫
S(1−λ)ρ

(
|∇A2|

n−1
2 + |A2|n−1

)
dH n−1

)
.

Since by Hölder inequality we have∫
Bρ∖B(1−λ)ρ

|FAλ
|2 dLn ≤ Kλ

n−4
n

(∫
Bρ∖B(1−λ)ρ

|FAλ
|
n
2 dLn

) 4
n

,

the statement follows. □

The proofs of Theorem 1.3 and Corollary 1.4 follow directly from the following non-
concentration lemma for almost YM-energy minimizers in arbitrary dimension.

Lemma 6.2. Let G be a compact matrix Lie group with Lie algebra g. Let n ≥ 5 and let

Ω ⊂ Rn be an open set. Let y ∈ Ω and let A ∈ (W
1,n−1

2
loc ∩ Ln−1

loc )(Ω ∖ {y}, T ∗(Ω ∖ {y}) ⊗ g) be
such that ∫

Ω
|FA|

n−1
2 dLn < +∞.

Assume that A is an almost YM-minimizing connection with y ∈ Sing(A). Assume that {ρi}i∈N
is such that ρi → 0, Ay,ρi := τ∗y,ρiA ⇀ φ weakly and FAy,ρi

→ Fφ weakly in L
n−1
2 (Bn). Assume

moreover that Sing(φ) = {0}. Then we have FAy,ρi
→ Fφ strongly in L2(Bn) as i→ +∞.

Proof. First notice that, since for every i ∈ N we have FAy,ρi
∈ L

n−1
2 (Bn), for every i ∈ N there

exists δi ∈ (0, 12) such that δi → 0 as i→ +∞ and∫
Bn∖B1−δi

(
|FAy,ρi

|
n−1
2 + |Fφ|

n−1
2
)
dLn < εG,
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where εG > 0 is the constant given by Uhlenbeck’s gauge extraction theorem [Uhl82a]. By

Fubini’s theorem, for every i ∈ N there exists ri ∈ (1− δi
2 , 1) such that Ay,ρi ∈W 1,n−1

2 (Sri) and∫
Sri

|FAy,ρi
|
n−1
2 dH n−1 < εG,

Moreover, for every i ∈ N there exists λi ∈ (0, δi2 ) such that∫
S(1−λi)ri

|Fφ|
n−1
2 dH n−1 < εG.

Let

φi :=

(
·

1 − λi

)∗
φ on B(1−λi)ri .

for every i ∈ N. By Uhlenbeck’s Coulomb gauge extraction theorem [Uhl82a], for every i ∈ N
there exists gi ∈W 2,n−1

2 (Sri , G) and hi ∈W 2,n−1
2 (S(1−λi)ri , G) such that∫

Sri

(
|∇Agi

y,ρi |
n−1
2 + |Agi

y,ρi |
n−1
)
dH n−1 ≤ CG

∫
Sri

|FAy,ρi
|
n−1
2 dH n−1 < CGεG

and ∫
Sri

(
|∇φhi

i |
n−1
2 + |φhi

i |n−1
)
dH n−1 ≤ CG

∫
Sri

|Fφi |
n−1
2 dH n−1 < CGεG,

where CG > 0 is a constant depending only on G. By Lemma 6.1, for every i ∈ N there
exists Aλi

∈ W 1,n
2 (Bri ∖ B(1−λi)ri , T

∗(Bri ∖ B(1−λi)ri) ⊗ g) such that Aλi
|Sri = Agi

y,ρi |Sri ,
Aλi

|S(1−λi)ri
= φhi

i |S(1−λi)ri
and for some universal K > 0 we have∫
Bri∖B(1−λi)ri

|FAλi
|2 dLn ≤ KCGεGλ

n−4
n

i

for some constant K > 0 depending only on n. Let

h̃i :=

(
(1 − λi)ri

·
| · |

)∗
hi ∈W 2,n−1

2 (B(1−λi)ri , G) ∀ i ∈ N

and define Ãi ∈W 1,n
2 (Bri , T

∗Bri ⊗ g) by

Ãi =

{
φh̃i
i on B(1−λi)ri

Aλi
on Bri ∖ B(1−λi)ri .

Let

g̃i :=

(
ri

·
| · |

)∗
gi ∈W 2,n−1

2 (Bri , G) ∀ i ∈ N

Then, by almost YM-minimality of A, we have∫
Bn

|Fφ|2 dLn ≤ lim inf
i→+∞

∫
Bn

|FAy,ρi
|2 dLn = lim inf

i→+∞

∫
Bri

∣∣F
A

g̃i
y,ρi

∣∣2 dLn

≤ lim inf
i→+∞

(∫
Bri

|FÃi
|2 dLn + Cραi

)
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≤ lim inf
i→+∞

(∫
B(1−λi)ri

∣∣F
φ
h̃i
i

∣∣2 dLn +

∫
Bri∖B(1−λi)ri

|FAλi
|2 dLn

)
≤ lim inf

i→+∞

(
(1 − λi)

n−4

∫
Bri

|Fφ|2 dLn +KCGεGλ
n−4
n

i

)
=

∫
Bn

|Fφ|2 dLn.

The statement follows. □

Remark 6.3. Let n ≥ 5, let Ω ⊂ Rn be open and y ∈ Ω. Let A ∈ C∞(Ω∖ {y}, T ∗(Ω∖ {y})⊗ g)
is a stationary Yang–Mills connection on Ω ∖ {y}. Notice that the uniform pointwise curvature
bound

|FA| ≤
C

| · − y|2
on Ω ∖ {y}(6.2)

for some C > 0. Arguing by gluing of gauges on intersecting annuli around y with constant
conformal factor as in [Riv20, Proof of Theorem V.6]15, we can show that there exists ρ > 0

and g ∈W
2,n

2
loc (Bρ(y), G) such that Ag satisfies

|∇Ag| ≤ C

| · − y|2
on Bρ(y) ∖ {y}

for some C > 0. This immediately implies that Ag ∈ W 1,(n
2
,∞)(Bρ(y)). Therefore, the

assumption in (6.2) used in [Yan03] is strictly stronger than the ones of Lemma 6.2.

Appendix A. A criterion for the uniqueness of tangent cones

The aim of this last section is to prove a standard argument in the literature allowing us to
infer uniqueness of tangent cone to an almost YM-energy minimizing Yang–Mills connection
A at some point y from a sufficiently fast decay of the energy density Θ(ρ, y;A) to its limit
Θ(y;A), usually referred to as Dini continuity. We reproduce the argument here for the sake of
completeness.

Proposition A.1. Let G be a compact matrix Lie group with Lie algebra g. Let n ≥ 5 and let
Ω ⊂ Rn be an open set. Let A ∈ (W 1,2 ∩ L4)(Ω, T ∗Ω ⊗ g) be an almost YM-energy minimizing
connection on Ω. Assume that y ∈ Sing(A) is an isolated singularity for A and that there exist
ρ0 ∈ (0, dist(y, ∂Ω)) and a non-decreasing function ϕ ∈ (0, ρ0) → (0,+∞) such that

e(ρ) := Θ(ρ, y;A) − Θ(y;A) ≤ ϕ(ρ) ∀ ρ ∈ (0, ρ0)(A.1)

and ∫ ρ0

0

√
ϕ(ρ)

ρ
dL1(ρ) < +∞.(A.2)

Then, the tangent cone to A at y is unique modulo gauge transformations.

15See also the original argument in [Uhl82b].
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Proof. First, recall the almost monotonicity formula for almost YM-energy minimizers given
by Proposition 2.9: there exist C,α > 0 such that for every 0 < σ < ρ < dist(y, ∂Ω) we have

1

ρn−4

∫
Bρ(y)

|FA|2 dLn − 1

σn−4

∫
Bσ(y)

|FA|2 dLn + ρα ≥ C

∫
Bρ(y)∖Bσ(y)

1

| · |n−4
|FA νy|2 dLn,

(A.3)

where we have defined

νy :=
· − y

| · − y|
on Rn ∖ {y}.

As y ∈ Sing(A) is an isolated singularity for A, there exists ρ0 ∈ (0, dist(y, ∂Ω)) such that A is
smooth on Bρ0(y) ∖ {0} Since our result holds modulo gauge transformations, we can always
assume that A is in the celebrated Uhlenbeck exponential gauge around y, satisfying

A νy ≡ 0 on Bρ0(y) ∖ {y}.(A.4)

By differentiating (A.4), we get

∂

∂νy
(| · − y|A) = | · − y|FA νy on Bρ0(y) ∖ {y}.(A.5)

Now, let φ1, φ2 be any two tangent cones to A at the point y. By definition of tangent cone,
there exist sequences {ρi}i∈N ⊂ (0, ρ0) and {σi}i∈N ⊂ (0, ρ0) such that ρi, σi → 0+ and

Ay,ρi := τ∗y,ρiA ⇀ φ1 and Ay,σi ⇀ φ2

weakly in W 1,2(Bn) as i→ +∞. By the weak continuity of the trace operator, we have

Ay,ρi |Sn−1 ⇀ φ1|Sn−1 and Ay,σi |Sn−1 ⇀ φ2|Sn−1

weakly in L2(Sn−1) as i→ +∞. Thus, by (A.5) we have∫
Sn−1

|φ1 − φ2| dH n−1 ≤ lim inf
i→+∞

∫
Sn−1

|Ay,ρi −Ay,σi | dH n−1

= lim inf
i→+∞

∫
Sn−1

|ρiA(ρix+ y) − σiA(σix+ y)| dH n−1(x)

= lim inf
i→+∞

∫
Sn−1

∣∣∣∣ ∫ ρi

σi

∂

∂ρ
(ρA(ρx+ y)) dL1(ρ)

∣∣∣∣ dH n−1(x)

= lim inf
i→+∞

∫
Sn−1

∫ ρi

σi

|(FA νy)(ρx+ y)| dL1(ρ) dH n−1(x)

= lim inf
i→+∞

∫ ρi

σi

∫
Sn−1

ρ|(FA νy)(ρx+ y)| dH n−1(x) dL1(ρ)

= lim inf
i→+∞

∫ ρi

σi

∫
∂Bρ(y)

1

ρn−2
|(FA νy)(z)| dH n−1(z) dL1(ρ)

= lim inf
i→+∞

∫
Bρi (y)∖Bσi (y)

1

| · − y|n−2
|FA νy| dLn.(A.6)

By Hölder inequality, (A.3) and the bound (A.1) in the assumptions, for every 0 < σ < ρ < ρ0
we have∫

Bρ(y)∖Bσ(y)

1

| · − y|n−2
|FA νy| dLn
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≤
(∫

Bρ(y)∖Bσ(y)

1

| · − y|n−4
|FA νy|2 dLn

) 1
2
(∫

Bρ(y)∖Bσ(y)

1

| · − y|n
dLn

) 1
2

≤ C
(
(log ρ− log σ)(Θ(ρ, y;A) − Θ(y;A))

) 1
2

≤ C
(
(log ρ− log σ)ϕ(ρ)

) 1
2 .

Fix any 0 < σ < ρ < ρ0 and let k ∈ N be such that ρ/2k ≤ σ. From the previous estimate, for
every i ∈ N we get∫

Bρ/2i (y)∖Bρ/2i+1 (y)

1

| · − y|n−1
|FA νy| dLn ≤ C̃

√
ϕ

(
ρ

2i

)
Then we have∫

Bρ(y)∖Bσ(y)

1

| · − y|n−2
|FA νy| dLn ≤

∫
Bρ(y)∖B

ρ/2k
(y)

1

| · − y|n−2
|FA νy| dLn

=
k−1∑
i=0

∫
Bρ/2i (y)∖Bρ/2i+1 (y)

1

| · − y|n−2
|FA νy| dLn

≤
n−1∑
i=0

√
ϕ

(
ρ

2i

)
=

n−1∑
i=0

√
ϕ

(
ρ

2i

)
2i

ρ

ρ

2i

≤
∫ ρ

0

√
ϕ(t)

t
dL1(t).

(A.7)

By the assumption (A.2) and (A.6) we then get∫
Sn−1

|φ1 − φ2| dH n−1 ≤ lim inf
i→+∞

∫
Bρi (y)∖Bσi (y)

1

| · − y|n−2
|FA νy| dLn

≤ lim inf
i→+∞

∫ ρ

0

√
ϕ(t)

t
dL1(t) = 0.

Hence, we have φ1|Sn−1 = φ2|Sn−1 . Since both φ1 and φ2 are conical connections, we conclude
that φ1 = φ2 and the statement follows. □
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[Luc88] Stephan Luckhaus, Partial Hölder continuity for minima of certain energies among maps into a

Riemannian manifold, Indiana Univ. Math. J. 37 (1988), no. 2, 349–367. MR 963506 (Cited on
page 5.)

[MMR94] John W. Morgan, Tomasz Mrowka, and Daniel Ruberman, The L2-moduli space and a vanishing
theorem for Donaldson polynomial invariants, Monographs in Geometry and Topology, vol. II,
International Press, Cambridge, MA, 1994. MR 1287851 (Cited on page 3.)

[MR03] Yves Meyer and Tristan Rivière, A partial regularity result for a class of stationary Yang-Mills
fields in high dimension, Rev. Mat. Iberoamericana 19 (2003), no. 1, 195–219. MR 1993420 (Cited
on page 4.)

[Nak88] Hiraku Nakajima, Compactness of the moduli space of Yang-Mills connections in higher dimensions,
J. Math. Soc. Japan 40 (1988), no. 3, 383–392. MR 945342 (Cited on page 6.)

[PR10] David Pumberger and Tristan Rivière, Uniqueness of tangent cones for semicalibrated integral
2-cycles, Duke Math. J. 152 (2010), no. 3, 441–480. MR 2654220 (Cited on page 3.)

[PR17] Mircea Petrache and Tristan Rivière, The resolution of the Yang-Mills Plateau problem in super-
critical dimensions, Adv. Math. 316 (2017), 469–540. MR 3672911 (Cited on page 4.)

[Pri83] Peter Price, A monotonicity formula for Yang-Mills fields, Manuscripta Math. 43 (1983), no. 2-3,
131–166. MR 707042 (Cited on page 13.)

[Rd92] Johan R̊a de, On the Yang-Mills heat equation in two and three dimensions, J. Reine Angew. Math.
431 (1992), 123–163. MR 1179335 (Cited on page 3.)

[Rei64a] E. R. Reifenberg, An epiperimetric inequality related to the analyticity of minimal surfaces, Ann. of
Math. (2) 80 (1964), 1–14. MR 171197 (Cited on page 6.)



38 RICCARDO CANIATO AND DAVIDE PARISE

[Rei64b] , On the analyticity of minimal surfaces, Ann. of Math. (2) 80 (1964), 15–21. MR 171198
(Cited on page 6.)

[Riv04] Tristan Rivière, A lower-epiperimetric inequality for area-minimizing surfaces, Comm. Pure Appl.
Math. 57 (2004), no. 12, 1673–1685. MR 2082243 (Cited on page 6.)

[Riv20] , The variations of Yang-Mills Lagrangian, Geometric analysis—in honor of Gang Tian’s
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